From 1a47694161b0fe484b3c2837fd01dddbe993e1af Mon Sep 17 00:00:00 2001 From: ID Bot Date: Thu, 26 Sep 2024 18:41:50 +0000 Subject: [PATCH] Script updating gh-pages from 5006b22. [ci skip] --- index.html | 8 + .../draft-ietf-lamps-pq-composite-sigs.html | 3789 +++++++++++++++++ .../draft-ietf-lamps-pq-composite-sigs.txt | 2338 ++++++++++ mikeo_selection_criteria/index.html | 45 + 4 files changed, 6180 insertions(+) create mode 100644 mikeo_selection_criteria/draft-ietf-lamps-pq-composite-sigs.html create mode 100644 mikeo_selection_criteria/draft-ietf-lamps-pq-composite-sigs.txt create mode 100644 mikeo_selection_criteria/index.html diff --git a/index.html b/index.html index f177aff..2104c1f 100644 --- a/index.html +++ b/index.html @@ -32,6 +32,14 @@

Preview for branch mikeo_asn1_9

diff with main +

Preview for branch mikeo_selection_criteria

+ + + + + + +
PQ Composite ML-DSAplain textdiff with main

Preview for branch issue-35

diff --git a/mikeo_selection_criteria/draft-ietf-lamps-pq-composite-sigs.html b/mikeo_selection_criteria/draft-ietf-lamps-pq-composite-sigs.html new file mode 100644 index 0000000..e572545 --- /dev/null +++ b/mikeo_selection_criteria/draft-ietf-lamps-pq-composite-sigs.html @@ -0,0 +1,3789 @@ + + + + + + +Composite ML-DSA for use in Internet PKI + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
Internet-DraftPQ Composite ML-DSASeptember 2024
Ounsworth, et al.Expires 30 March 2025[Page]
+
+
+
+
Workgroup:
+
LAMPS
+
Internet-Draft:
+
draft-ietf-lamps-pq-composite-sigs-latest
+
Published:
+
+ +
+
Intended Status:
+
Standards Track
+
Expires:
+
+
Authors:
+
+
+
M. Ounsworth
+
Entrust
+
+
+
J. Gray
+
Entrust
+
+
+
M. Pala
+
OpenCA Labs
+
+
+
J. Klaussner
+
Bundesdruckerei GmbH
+
+
+
S. Fluhrer
+
Cisco Systems
+
+
+
+
+

Composite ML-DSA for use in Internet PKI

+
+

Abstract

+

This document introduces a set of signature schemes that use pairs of cryptographic elements such as public keys and signatures to combine their security properties. These schemes effectively mitigate risks associated with the adoption of post-quantum cryptography and are fully compatible with existing X.509, PKIX, and CMS data structures and protocols. This document defines thirteen specific pairwise combinations, called ML-DSA Composite Schemes, that blend ML-DSA with traditional algorithms such as RSA, ECDSA, Ed25519, and Ed448. These combinations are tailored to meet security best practices and regulatory requirements. Composite ML-DSA is applicable in any application that would otherwise use ML-DSA, but wants the protection against breaks or catastrophic bugs in ML-DSA.

+
+
+
+

+Status of This Memo +

+

+ This Internet-Draft is submitted in full conformance with the + provisions of BCP 78 and BCP 79.

+

+ Internet-Drafts are working documents of the Internet Engineering Task + Force (IETF). Note that other groups may also distribute working + documents as Internet-Drafts. The list of current Internet-Drafts is + at https://datatracker.ietf.org/drafts/current/.

+

+ Internet-Drafts are draft documents valid for a maximum of six months + and may be updated, replaced, or obsoleted by other documents at any + time. It is inappropriate to use Internet-Drafts as reference + material or to cite them other than as "work in progress."

+

+ This Internet-Draft will expire on 30 March 2025.

+
+
+ +
+
+

+Table of Contents +

+ +
+
+
+
+

+1. Changes in -03 +

+
    +
  • +

    ASN.1 Module changes:

    +
      +
    • +

      Renamed the module from Composite-Signatures-2023 -> Composite-MLDSA-2024

      +
    • +
    • +

      Simplified the ASN.1 module to make it more compiler-friendly (thanks Carl!) -- should not affect wire encodings.

      +
    • +
    +
  • +
+
+
+
+
+

+2. Introduction +

+

The advent of quantum computing poses a significant threat to current cryptographic systems. Traditional cryptographic algorithms such as RSA, Diffie-Hellman, DSA, and their elliptic curve variants are vulnerable to quantum attacks. During the transition to post-quantum cryptography (PQC), there is considerable uncertainty regarding the robustness of both existing and new cryptographic algorithms. While we can no longer fully trust traditional cryptography, we also cannot immediately place complete trust in post-quantum replacements until they have undergone extensive scrutiny and real-world testing to uncover and rectify potential implementation flaws.

+

Unlike previous migrations between cryptographic algorithms, the decision of when to migrate and which algorithms to adopt is far from straightforward. Even after the migration period, it may be advantageous for an entity's cryptographic identity to incorporate multiple public-key algorithms to enhance security.

+

Cautious implementers may opt to combine cryptographic algorithms in such a way that an attacker would need to break all of them simultaneously to compromise the protected data. These mechanisms are referred to as Post-Quantum/Traditional (PQ/T) Hybrids [I-D.driscoll-pqt-hybrid-terminology].

+

Certain jurisdictions are already recommending or mandating that PQC lattice schemes be used exclusively within a PQ/T hybrid framework. The use of Composite scheme provides a straightforward implementation of hybrid solutions compatible with (and advocated by) some governments and cybersecurity agencies [BSI2021].

+

Composite ML-DSA is applicable in any application that would otherwise use ML-DSA, but wants the protection against breaks or catastrophic bugs in ML-DSA.

+
+
+

+2.1. Conventions and Terminology +

+

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL +NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", +"MAY", and "OPTIONAL" in this document are to be interpreted as +described in BCP 14 [RFC2119] [RFC8174] when, and only when, they +appear in all capitals, as shown here. +These words may also appear in this document in +lower case as plain English words, absent their normative meanings.

+

This document is consistent with the terminology defined in [I-D.driscoll-pqt-hybrid-terminology]. In addition, the following terminology is used throughout this document:

+

ALGORITHM: + A standardized cryptographic primitive, as well as + any ASN.1 structures needed for encoding data and + metadata needed to use the algorithm. This document is + primarily concerned with algorithms for producing digital + signatures.

+

BER: + Basic Encoding Rules (BER) as defined in [X.690].

+

CLIENT: + Any software that is making use of a cryptographic key. + This includes a signer, verifier, encrypter, decrypter.

+

COMPONENT ALGORITHM: + A single basic algorithm which is contained within a + composite algorithm.

+

COMPOSITE ALGORITHM: + An algorithm which is a sequence of two component + algorithms, as defined in Section 5.

+

DER: + Distinguished Encoding Rules as defined in [X.690].

+

LEGACY: For the purposes of this document, a legacy algorithm is + any cryptographic algorithm currently in use which is + not believed to be resistant to quantum cryptanalysis.

+

PKI: + Public Key Infrastructure, as defined in [RFC5280].

+

POST-QUANTUM ALGORITHM: + Any cryptographic algorithm which is believed to be resistant + to classical and quantum cryptanalysis, such as the algorithms being considered for standardization by NIST.

+

PUBLIC / PRIVATE KEY: + The public and private portion of an asymmetric cryptographic + key, making no assumptions about which algorithm.

+

SIGNATURE: + A digital cryptographic signature, making no assumptions + about which algorithm.

+

STRIPPING ATTACK: + An attack in which the attacker is able to downgrade the + cryptographic object to an attacker-chosen subset of + original set of component algorithms in such a way that + it is not detectable by the receiver. For example, + substituting a composite public key or signature for a + version with fewer components.

+
+
+
+
+
+
+

+3. Composite Signatures Schemes +

+

The engineering principle behind the definition of Composite schemes is to define a new family of algorithms that combines the use of cryptographic operations from two different ones: ML-DSA one and a traditional one. The complexity of combining security properties from the selected two algorithms is handled at the cryptographic library or cryptographic module, thus minimal changes are expected at the application or protocol level. Composite schemes are fully compatible with the X.509 model: composite public keys, composite private keys, and ciphertexts can be carried in existing data structures and protocols such as PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS [RFC5652], and the Trust Anchor Format [RFC5914].

+

Composite schemes are defined as cryptographic primitives that consists of three algorithms:

+
    +
  • +

    KeyGen() -> (pk, sk): A probabilistic key generation algorithm, +which generates a public key pk and a secret key sk.

    +
  • +
  • +

    Sign(sk, Message) -> (signature): A signing algorithm which takes +as input a secret key sk and a Message, and outputs a signature

    +
  • +
  • +

    Verify(pk, Message, signature) -> true or false: A verification algorithm +which takes as input a public key, a Message, and a signature and outputs true +if the signature verifies correctly. Thus it proves the Message was signed +with the secret key associated with the public key and verifies the integrity +of the Message. If the signature and public key cannot verify the Message, +it returns false.

    +
  • +
+

A composite signature allows the security properties of the two underlying algorithms to be combined via standard signature operations such as generation and verify and can be used in all applications that use signatures without the need for changes in data structures or protocol messages.

+
+
+

+3.1. Composite Schemes PreHashing +

+

Composite schemes' signature generation process and composite signature verification process are designed to provide security properties meant to address specific issues related to the use multiple algorithms and they require the use of pre-hasing. In Composite schemes, the value of the DER encoding of the selected signature scheme is concatenated with the calculated Hash over the original message.

+

The output is then used as input for the Sign() and Verify() functions.

+
+
+
+
+
+
+

+4. Cryptographic Primitives +

+
+
+

+4.1. Key Generation +

+

To generate a new keypair for Composite schemes, the KeyGen() -> (pk, sk) function is used. The KeyGen() function calls the two key generation functions of the component algorithms for the Composite keypair in no particular order. Multi-process or multi-threaded applications might choose to execute the key generation functions in parallel for better key generation performance.

+

The generated public key structure is described in Section 5.2, while the corresponding composite secret key structure is defined in Section 5.3.

+

The following process is used to generate composite keypair values:

+
+
+
+
+KeyGen() -> (pk, sk)
+
+Input:
+     sk_1, sk_2         Private keys for each component.
+
+     pk_1, pk_2         Public keys for each component.
+
+     A1, A2             Component signature algorithms.
+
+Output:
+     (pk, sk)           The composite keypair.
+
+Function KeyGen():
+
+  (pk_1, sk_1) <- A1.KeyGen()
+  (pk_2, sk_2) <- A2.KeyGen()
+
+  if NOT (pk_1, sk_1) or NOT (pk_2, sk_2):
+    // Component key generation failure
+    return NULL
+
+  (pk, sk) <- encode[(pk_1, sk_1), (pk_2, sk_2)]
+  if NOT (pk, sk):
+    // Encoding failure
+    return False
+
+  // Success
+  return (pk, sk)
+
+
+
+
Figure 1: +Composite KeyGen(pk, sk) +
+
+

The key generation functions MUST be executed for both algorithms. Compliant parties MUST NOT use or import component keys that are used in other contexts, combinations, or by themselves (i.e., not only in X.509 certificates).

+
+
+
+
+

+4.2. Signature Generation +

+

Composite schemes' signatures provide important properties for multi-key environments such as non-separability and key-binding. For more information on the additional security properties and their applicability to multi-key or hybrid environments, please refer to [I-D.hale-pquip-hybrid-signature-spectrums] and the use of labels as defined in [Bindel2017]

+

Composite signature generation starts with pre-hashing the message that is concatenated with the Domain separator Section 7.1. After that, the signature process for each component algorithm is invoked and the values are then placed in the CompositeSignatureValue structure defined in Section 6.1.

+

A composite signature's value MUST include two signature components and MUST be in the same order as the components from the corresponding signing key.

+

The following process is used to generate composite signature values.

+
+
+
+
+Sign (sk, Message) -> (signature)
+Input:
+     K1, K2             Signing private keys for each component. See note below on
+                        composite inputs.
+
+     A1, A2             Component signature algorithms. See note below on
+                        composite inputs.
+
+     Message            The Message to be signed, an octet string
+
+     HASH               The Message Digest Algorithm used for pre-hashing.  See section
+                        on pre-hashing below.
+
+     Domain             Domain separator value for binding the signature to the Composite OID.
+                        See section on Domain Separators below.
+
+Output:
+     signature          The composite signature, a CompositeSignatureValue
+
+Signature Generation Process:
+
+   1. Compute the new Message M' by concatenating the Domain identifier (i.e., the DER encoding of the Composite signature algorithm identifier) with the Hash of the Message
+
+         M' := Domain || HASH(Message)
+
+   2. Generate the 2 component signatures independently, by calculating the signature over M'
+      according to their algorithm specifications that might involve the use of the hash-n-sign paradigm.
+
+         S1 := Sign( K1, A1, M' )
+         S2 := Sign( K2, A2, M' )
+
+   3. Encode each component signature S1 and S2 into a BIT STRING
+      according to its algorithm specification.
+
+        signature := NULL
+
+        IF (S1 != NULL) and (S2 != NULL):
+          signature := Sequence { S1, S2 }
+
+   4. Output signature
+
+        return signature
+
+
+
Figure 2: +Composite Sign(sk, Message) +
+
+

It is possible to construct CompositePrivateKey(s) to generate signatures from component keys stored in separate software or hardware keystores. Variations in the process to accommodate particular private key storage mechanisms are considered to be conformant to this document so long as it produces the same output as the process sketched above.

+
+
+
+
+

+4.3. Signature Verify +

+

Verification of a composite signature involves reconstructing the M' message first by concatenating the Domain separator (i.e., the DER encoding of the used Composite scheme's OID) with the Hash of the original message and then applying each component algorithm's verification process to the new message M'.

+

Compliant applications MUST output "Valid signature" (true) if and only if all component signatures were successfully validated, and "Invalid signature" (false) otherwise.

+

The following process is used to perform this verification.

+
+
+
+
+Composite Verify(pk, Message, signature)
+Input:
+     P1, P2             Public verification keys. See note below on
+                        composite inputs.
+
+     Message            Message whose signature is to be verified,
+                        an octet string.
+
+     signature          CompositeSignatureValue containing the component
+                        signature values (S1 and S2) to be verified.
+
+     A1, A2             Component signature algorithms. See note
+                        below on composite inputs.
+
+     HASH               The Message Digest Algorithm for pre-hashing.  See
+                        section on pre-hashing the message below.
+
+     Domain             Domain separator value for binding the signature to the Composite OID.
+                        See section on Domain Separators below.
+
+Output:
+    Validity (bool)    "Valid signature" (true) if the composite
+                        signature is valid, "Invalid signature"
+                        (false) otherwise.
+
+Signature Verification Procedure::
+   1. Check keys, signatures, and algorithms lists for consistency.
+
+      If Error during Desequencing, or the sequences have
+      different numbers of elements, or any of the public keys
+      P1 or P2 and the algorithm identifiers A1 or A2 are
+      composite then output "Invalid signature" and stop.
+
+   2. Compute a Hash of the Message
+
+         M' = Domain || HASH(Message)
+
+   3. Check each component signature individually, according to its
+       algorithm specification.
+       If any fail, then the entire signature validation fails.
+
+       if not verify( P1, M', S1, A1 ) then
+            output "Invalid signature"
+       if not verify( P2, M', S2, A2 ) then
+            output "Invalid signature"
+
+       if all succeeded, then
+        output "Valid signature"
+
+
+
Figure 3: +Composite Verify(pk, Message, signature) +
+
+

It is possible to construct CompositePublicKey(s) to verify signatures from component keys stored in separate software or hardware keystores. Variations in the process to accommodate particular private key storage mechanisms are considered to be conformant to this document so long as it produces the same output as the process sketched above.

+
+
+
+
+
+
+

+5. Composite Key Structures +

+

In order for signatures to be composed of multiple algorithms, we define encodings consisting of a sequence of signature primitives (aka "component algorithms") such that these structures can be used as a drop-in replacement for existing signature fields such as those found in PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS [RFC5652].

+
+
+

+5.1. pk-CompositeSignature +

+

The following ASN.1 structures represent a composite public key combined with an RSA and Elliptic Curve public key, respectively.

+
+
+RsaCompositeSignaturePublicKey ::= SEQUENCE {
+        firstPublicKey BIT STRING (ENCODED BY id-raw-key),
+        secondPublicKey BIT STRING (CONTAINING RSAPublicKey)
+      }
+
+EcCompositeSignaturePublicKey ::= SEQUENCE {
+        firstPublicKey BIT STRING (ENCODED BY id-raw-key),
+        secondPublicKey BIT STRING (CONTAINING ECPoint)
+      }
+
+EdCompositeSignaturePublicKey ::= SEQUENCE {
+        firstPublicKey BIT STRING (ENCODED BY id-raw-key),
+        secondPublicKey BIT STRING (CONTAINING id-raw-key)
+      }
+
+
+

id-raw-key is defined by this document.

+

This structure is intentionally generic in the first public key slot since ML-DSA, as defined in [I-D.ietf-lamps-dilithium-certificates], does not define any ASN.1 public key structures. For use with this document, the firstPublicKey MUST be the BIT STRING representation of an ML-DSA key as specified in [I-D.ietf-lamps-dilithium-certificates]. Note that here we used BIT STRING rather than OCTET STRING so that these keys can be trivially transcoded into a SubjectPublicKeyInfo as necessary, for example when a crypto library requires this for invoking the component algorithm. The public key for Edwards curve DSA component is also encoded as a raw key.

+

The following ASN.1 Information Object Class is defined to then allow for compact definitions of each composite algorithm.

+
+
+pk-CompositeSignature {OBJECT IDENTIFIER:id, PublicKeyType}
+    PUBLIC-KEY ::= {
+      IDENTIFIER id
+      KEY PublicKeyType
+      PARAMS ARE absent
+      CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign}
+    }
+
+
+

As an example, the public key type pk-MLDSA44-ECDSA-P256-SHA256 is defined as:

+
+
+pk-MLDSA44-ECDSA-P256-SHA256 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA44-ECDSA-P256-SHA256,
+  EcCompositeSignaturePublicKey}
+
+
+

The full set of key types defined by this specification can be found in the ASN.1 Module in Section 9.

+
+
+
+
+

+5.2. CompositeSignaturePublicKey +

+

Composite public key data is represented by the following structure:

+
+
+CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING
+
+
+

A composite key MUST contain two component public keys. The order of the component keys is determined by the definition of the corresponding algorithm identifier as defined in section Section 7.

+

Some applications may need to reconstruct the SubjectPublicKeyInfo objects corresponding to each component public key. Table 2 in Section 7 provides the necessary mapping between composite and their component algorithms for doing this reconstruction. This also motivates the design choice of SEQUENCE OF BIT STRING instead of SEQUENCE OF OCTET STRING; using BIT STRING allows for easier transcription between CompositeSignaturePublicKey and SubjectPublicKeyInfo.

+

When the CompositeSignaturePublicKey must be provided in octet string or bit string format, the data structure is encoded as specified in Section 5.4.

+

Component keys of a CompositeSignaturePublicKey MUST NOT be used in any other type of key or as a standalone key.

+
+
+
+
+

+5.3. CompositeSignaturePrivateKey +

+

Use cases that require an interoperable encoding for composite private keys, such as when private keys are carried in PKCS #12 [RFC7292], CMP [RFC4210] or CRMF [RFC4211] MUST use the following structure.

+
+
+CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey
+
+
+

Each element is a OneAsymmetricKey` [RFC5958] object for a component private key.

+

The parameters field MUST be absent.

+

The order of the component keys is the same as the order defined in Section 5.2 for the components of CompositeSignaturePublicKey.

+

When a CompositeSignaturePrivateKey is conveyed inside a OneAsymmetricKey structure (version 1 of which is also known as PrivateKeyInfo) [RFC5958], the privateKeyAlgorithm field SHALL be set to the corresponding composite algorithm identifier defined according to Section 7, the privateKey field SHALL contain the CompositeSignaturePrivateKey, and the publicKey field MUST NOT be present. Associated public key material MAY be present in the CompositeSignaturePrivateKey.

+

In some usecases the private keys that comprise a composite key may not be represented in a single structure or even be contained in a single cryptographic module; for example if one component is within the FIPS boundary of a cryptographic module and the other is not; see {sec-fips} for more discussion. The establishment of correspondence between public keys in a CompositeSignaturePublicKey and private keys not represented in a single composite structure is beyond the scope of this document.

+

Component keys of a CompositeSignaturePrivateKey MUST NOT be used in any other type of key or as a standalone key.

+
+
+
+
+

+5.4. Encoding Rules +

+

Many protocol specifications will require that the composite public key and composite private key data structures be represented by an octet string or bit string.

+

When an octet string is required, the DER encoding of the composite data structure SHALL be used directly.

+
+
+CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING
+                                CompositeSignaturePublicKey ENCODED BY der)
+
+
+

When a bit string is required, the octets of the DER encoded composite data structure SHALL be used as the bits of the bit string, with the most significant bit of the first octet becoming the first bit, and so on, ending with the least significant bit of the last octet becoming the last bit of the bit string.

+
+
+CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING
+                                CompositeSignaturePublicKey ENCODED BY der)
+
+
+

In the interests of simplicity and avoiding compatibility issues, implementations that parse these structures MAY accept both BER and DER.

+
+
+
+
+

+5.5. Key Usage Bits +

+

For protocols such as X.509 [RFC5280] that specify key usage along with the public key, then the composite public key associated with a composite signature MUST have a signing-type key usage. +This is because the composite public key can only be used in situations +that are appropriate for both component algorithms, so even if the +classical component key supports both signing and encryption, +the post-quantum algorithms do not.

+

If the keyUsage extension is present in a Certification Authority (CA) certificate that indicates a composite key, then any combination of the following values MAY be present and any other values MUST NOT be present:

+
+
+digitalSignature;
+nonRepudiation;
+keyCertSign; and
+cRLSign.
+
+
+

If the keyUsage extension is present in an End Entity (EE) certificate that indicates a composite key, then any combination of the following values MAY be present and any other values MUST NOT be present:

+
+
+digitalSignature; and
+nonRepudiation;
+
+
+
+
+
+
+
+
+

+6. Composite Signature Structures +

+
+
+

+6.1. sa-CompositeSignature +

+

The ASN.1 algorithm object for a composite signature is:

+
+
+sa-CompositeSignature{OBJECT IDENTIFIER:id,
+   PUBLIC-KEY:publicKeyType }
+      SIGNATURE-ALGORITHM ::=  {
+         IDENTIFIER id
+         VALUE CompositeSignatureValue
+         PARAMS ARE absent
+         PUBLIC-KEYS {publicKeyType}
+      }
+
+
+

The following is an explanation how SIGNATURE-ALGORITHM elements are used +to create Composite Signatures:

+ + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1
SIGNATURE-ALGORITHM elementDefinition
IDENTIFIERThe Object ID used to identify the composite Signature Algorithm
VALUEThe Sequence of BIT STRINGS for each component signature value
PARAMSParameters are absent
PUBLIC-KEYSThe composite key required to produce the composite signature
+
+
+
+
+

+6.2. CompositeSignatureValue +

+

The output of the composite signature algorithm is the DER encoding of the following structure:

+
+
+CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING
+
+
+

Where each BIT STRING within the SEQUENCE is a signature value produced by one of the component keys. It MUST contain one signature value produced by each component algorithm, and in the same order as specified in the object identifier.

+

The choice of SEQUENCE SIZE (2) OF BIT STRING, rather than for example a single BIT STRING containing the concatenated signature values, is to gracefully handle variable-length signature values by taking advantage of ASN.1's built-in length fields.

+
+
+
+
+
+
+

+7. Algorithm Identifiers +

+

This section defines the algorithm identifiers for explicit combinations. For simplicity and prototyping purposes, the signature algorithm object identifiers specified in this document are the same as the composite key object Identifiers. A proper implementation should not presume that the object ID of a composite key will be the same as its composite signature algorithm.

+

This section is not intended to be exhaustive and other authors may define other composite signature algorithms so long as they are compatible with the structures and processes defined in this and companion public and private key documents.

+

Some use-cases desire the flexibility for clients to use any combination of supported algorithms, while others desire the rigidity of explicitly-specified combinations of algorithms.

+

The following table summarizes the details for each explicit composite signature algorithms:

+

The OID referenced are TBD for prototyping only, and the following prefix is used for each:

+

replace <CompSig> with the String "2.16.840.1.114027.80.8.1"

+

Therefore <CompSig>.21 is equal to 2.16.840.1.114027.80.8.1.21

+

Signature public key types:

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+Table 2: +Composite Signature Algorithms +
Composite Signature AlgorithmIDOIDFirst AlgorithmIDSecond AlgorithmIDPre-Hash
id-MLDSA44-RSA2048-PSS-SHA256<CompSig>.21id-ML-DSA-44id-RSASA-PSS with id-sha256id-sha256
id-MLDSA44-RSA2048-PKCS15-SHA256<CompSig>.22id-ML-DSA-44sha256WithRSAEncryptionid-sha256
id-MLDSA44-Ed25519-SHA512<CompSig>.23id-ML-DSA-44id-Ed25519id-sha512
id-MLDSA44-ECDSA-P256-SHA256<CompSig>.24id-ML-DSA-44ecdsa-with-SHA256 with secp256r1id-sha256
id-MLDSA44-ECDSA-brainpoolP256r1-SHA256<CompSig>.25id-ML-DSA-44ecdsa-with-SHA256 with brainpoolP256r1id-sha256
id-MLDSA65-RSA3072-PSS-SHA512<CompSig>.26id-ML-DSA-65id-RSASA-PSS with id-sha512id-sha512
id-MLDSA65-RSA3072-PKCS15-SHA512<CompSig>.27id-ML-DSA-65sha512WithRSAEncryptionid-sha512
id-MLDSA65-RSA4096-PSS-SHA512<CompSig>.34id-ML-DSA-65id-RSASA-PSS with id-sha512id-sha512
id-MLDSA65-RSA4096-PKCS15-SHA512<CompSig>.35id-ML-DSA-65sha512WithRSAEncryptionid-sha512
id-MLDSA65-ECDSA-P256-SHA512<CompSig>.28id-ML-DSA-65ecdsa-with-SHA512 with secp256r1id-sha512
id-MLDSA65-ECDSA-brainpoolP256r1-SHA512<CompSig>.29id-ML-DSA-65ecdsa-with-SHA512 with brainpoolP256r1id-sha512
id-MLDSA65-Ed25519-SHA512<CompSig>.30id-ML-DSA-65id-Ed25519id-sha512
id-MLDSA87-ECDSA-P384-SHA512<CompSig>.31id-ML-DSA-87ecdsa-with-SHA512 with secp384r1id-sha512
id-MLDSA87-ECDSA-brainpoolP384r1-SHA512<CompSig>.32id-ML-DSA-87ecdsa-with-SHA512 with brainpoolP384r1id-sha512
id-MLDSA87-Ed448-SHA512<CompSig>.33id-ML-DSA-87id-Ed448id-sha512
+
+

The table above contains everything needed to implement the listed explicit composite algorithms. See the ASN.1 module in section Section 9 for the explicit definitions of the above Composite signature algorithms.

+

Full specifications for the referenced algorithms can be found in Appendix A.

+
+
+

+7.1. Domain Separators +

+

As mentioned above, the OID input value is used as a domain separator for the Composite Signature Generation and verification process and is the DER encoding of the OID. The following table shows the HEX encoding for each Signature AlgorithmID.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+Table 3: +Composite Signature Domain Separators +
Composite Signature AlgorithmIDDomain Separator (in Hex encoding)
id-MLDSA44-RSA2048-PSS-SHA256060B6086480186FA6B50080115
id-MLDSA44-RSA2048-PKCS15-SHA256060B6086480186FA6B50080116
id-MLDSA44-Ed25519-SHA512060B6086480186FA6B50080117
id-MLDSA44-ECDSA-P256-SHA256060B6086480186FA6B50080118
id-MLDSA44-ECDSA-brainpoolP256r1-SHA256060B6086480186FA6B50080119
id-MLDSA65-RSA3072-PSS-SHA512060B6086480186FA6B5008011A
id-MLDSA65-RSA3072-PKCS15-SHA512060B6086480186FA6B5008011B
id-MLDSA65-RSA4096-PSS-SHA512060B6086480186FA6B50080122
id-MLDSA65-RSA4096-PKCS15-SHA512060B6086480186FA6B50080123
id-MLDSA65-ECDSA-P256-SHA512060B6086480186FA6B5008011C
id-MLDSA65-ECDSA-brainpoolP256r1-SHA512060B6086480186FA6B5008011D
id-MLDSA65-Ed25519-SHA512060B6086480186FA6B5008011E
id-MLDSA87-ECDSA-P384-SHA512060B6086480186FA6B5008011F
id-MLDSA87-ECDSA-brainpoolP384r1-SHA512060B6086480186FA6B50080120
id-MLDSA87-Ed448-SHA512060B6086480186FA6B50080121
+
+
+
+
+
+

+7.2. Notes on id-MLDSA44-RSA2048-PSS-SHA256 +

+

Use of RSA-PSS [RFC8017] deserves a special explanation.

+

The RSA component keys MUST be generated at the 2048-bit security level in order to match with ML-DSA-44

+

As with the other composite signature algorithms, when id-MLDSA44-RSA2048-PSS-SHA256 is used in an AlgorithmIdentifier, the parameters MUST be absent. id-MLDSA44-RSA2048-PSS-SHA256 SHALL instantiate RSA-PSS with the following parameters:

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+Table 4: +RSA-PSS 2048 Parameters +
RSA-PSS ParameterValue
Mask Generation Functionmgf1
Mask Generation paramsSHA-256
Message Digest AlgorithmSHA-256
Salt Length in bits256
+
+

where:

+
    +
  • +

    Mask Generation Function (mgf1) is defined in [RFC8017]

    +
  • +
  • +

    SHA-256 is defined in [RFC6234].

    +
  • +
+
+
+
+
+

+7.3. Notes on id-MLDSA65-RSA3072-PSS-SHA512 +

+

The RSA component keys MUST be generated at the 3072-bit security level in order to match with ML-DSA-65.

+

As with the other composite signature algorithms, when id-MLDSA65-RSA3072-PSS-SHA512 is used in an AlgorithmIdentifier, the parameters MUST be absent. id-MLDSA65-RSA3072-PSS-SHA512 SHALL instantiate RSA-PSS with the following parameters:

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+Table 5: +RSA-PSS 3072 Parameters +
RSA-PSS ParameterValue
Mask Generation Functionmgf1
Mask Generation paramsSHA-512
Message Digest AlgorithmSHA-512
Salt Length in bits512
+
+

where:

+
    +
  • +

    Mask Generation Function (mgf1) is defined in [RFC8017]

    +
  • +
  • +

    SHA-512 is defined in [RFC6234].

    +
  • +
+
+
+
+
+

+7.4. Notes on id-MLDSA65-RSA4096-PSS-SHA512 +

+

The RSA component keys MUST be generated at the 4096-bit security level in order to match with ML-DSA-65.

+

As with the other composite signature algorithms, when id-MLDSA65-RSA4096-PSS-SHA512 is used in an AlgorithmIdentifier, the parameters MUST be absent. id-MLDSA65-RSA4096-PSS-SHA512 SHALL instantiate RSA-PSS with the following parameters:

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+Table 6: +RSA-PSS 4096 Parameters +
RSA-PSS ParameterValue
Mask Generation Functionmgf1
Mask Generation paramsSHA-512
Message Digest AlgorithmSHA-512
Salt Length in bits512
+
+

where:

+
    +
  • +

    Mask Generation Function (mgf1) is defined in [RFC8017]

    +
  • +
  • +

    SHA-512 is defined in [RFC6234].

    +
  • +
+
+
+
+
+
+
+

+8. Use in CMS +

+

[EDNOTE: The convention in LAMPS is to specify algorithms and their CMS conventions in separate documents. Here we have presented them in the same document, but this section has been written so that it can easily be moved to a standalone document.]

+

Composite Signature algorithms MAY be employed for one or more recipients in the CMS signed-data content type [RFC5652].

+
+
+

+8.1. Underlying Components +

+

When a particular Composite Signature OID is supported in CMS, an implementation SHOULD support the corresponding Secure Hash algorithm identifier in Table 7 that was used as the pre-hash.

+

The following table lists the MANDATORY HASH algorithms to preserve security and performance characteristics of each composite algorithm.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+Table 7: +Composite Signature SHA Algorithms +
Composite Signature AlgorithmIDSecure Hash
id-MLDSA44-RSA2048-PSS-SHA256SHA256
id-MLDSA44-RSA2048-PKCS15-SHA256SHA256
id-MLDSA44-Ed25519-SHA512SHA512
id-MLDSA44-ECDSA-P256-SHA256SHA256
id-MLDSA44-ECDSA-brainpoolP256r1-SHA256SHA256
id-MLDSA65-RSA3072-PSS-SHA512SHA512
id-MLDSA65-RSA3072-PKCS15-SHA512SHA512
id-MLDSA65-RSA4096-PSS-SHA512SHA512
id-MLDSA65-RSA4096-PKCS15-SHA512SHA512
id-MLDSA65-ECDSA-P256-SHA512SHA512
id-MLDSA65-ECDSA-brainpoolP256r1-SHA512SHA512
id-MLDSA65-Ed25519-SHA512SHA512
id-MLDSA87-ECDSA-P384-SHA512SHA512
id-MLDSA87-ECDSA-brainpoolP384r1-SHA512SHA512
id-MLDSA87-Ed448-SHA512SHA512
+
+

where:

+
    +
  • +

    SHA2 instantiations are defined in [FIPS180].

    +
  • +
+
+
+
+
+

+8.2. SignedData Conventions +

+

As specified in CMS [RFC5652], the digital signature is produced from the message digest and the signer's private key. The signature is computed over different values depending on whether signed attributes are absent or present.

+

When signed attributes are absent, the composite signature is computed over the content. When signed attributes are present, a hash is computed over the content using the same hash function that is used in the composite pre-hash, and then a message-digest attribute is constructed to contain the resulting hash value, and then the result of DER encoding the set of signed attributes, which MUST include a content-type attribute and a message-digest attribute, and then the composite signature is computed over the DER-encoded output. In summary:

+
+
+IF (signed attributes are absent)
+   THEN Composite_Sign(content)
+ELSE message-digest attribute = Hash(content);
+   Composite_Sign(DER(SignedAttributes))
+
+
+

When using Composite Signatures, the fields in the SignerInfo are used as follows:

+

digestAlgorithm: + The digestAlgorithm contains the one-way hash function used by the CMS signer.

+

signatureAlgorithm: + The signatureAlgorithm MUST contain one of the the Composite Signature algorithm identifiers as specified in Table 7

+

signature: + The signature field contains the signature value resulting from the composite signing operation of the specified signatureAlgorithm.

+
+
+
+
+

+8.3. Certificate Conventions +

+

The conventions specified in this section augment RFC 5280 [RFC5280].

+

The willingness to accept a composite Signature Algorithm MAY be signaled by the use of the SMIMECapabilities Attribute as specified in Section 2.5.2. of [RFC8551] or the SMIMECapabilities certificate extension as specified in [RFC4262].

+

The intended application for the public key MAY be indicated in the key usage certificate extension as specified in Section 4.2.1.3 of [RFC5280]. If the keyUsage extension is present in a certificate that conveys a composite Signature public key, then the key usage extension MUST contain only the following value:

+
+
+digitalSignature
+nonRepudiation
+keyCertSign
+cRLSign
+
+
+

The keyEncipherment and dataEncipherment values MUST NOT be present. That is, a public key intended to be employed only with a composite signature algorithm MUST NOT also be employed for data encryption. This requirement does not carry any particular security consideration; only the convention that signature keys be identified with 'digitalSignature','nonRepudiation','keyCertSign' or 'cRLSign' key usages.

+
+
+
+
+

+8.4. SMIMECapabilities Attribute Conventions +

+

Section 2.5.2 of [RFC8551] defines the SMIMECapabilities attribute to announce a partial list of algorithms that an S/MIME implementation can support. When constructing a CMS signed-data content type [RFC5652], a compliant implementation MAY include the SMIMECapabilities attribute that announces support for the RSA-KEM Algorithm.

+

The SMIMECapability SEQUENCE representing a composite signature Algorithm MUST include the appropriate object identifier as per Table 7 in the capabilityID field.

+
+
+
+
+
+
+

+9. ASN.1 Module +

+
+
+<CODE STARTS>
+
+Composite-MLDSA-2024
+  { iso(1) identified-organization(3) dod(6) internet(1)
+        security(5) mechanisms(5) pkix(7) id-mod(0)
+        id-mod-composite-mldsa(TBDMOD) }
+
+
+DEFINITIONS IMPLICIT TAGS ::= BEGIN
+
+EXPORTS ALL;
+
+IMPORTS
+  PUBLIC-KEY, SIGNATURE-ALGORITHM, AlgorithmIdentifier{}
+    FROM AlgorithmInformation-2009  -- RFC 5912 [X509ASN1]
+      { iso(1) identified-organization(3) dod(6) internet(1)
+        security(5) mechanisms(5) pkix(7) id-mod(0)
+        id-mod-algorithmInformation-02(58) }
+
+  SubjectPublicKeyInfo
+    FROM PKIX1Explicit-2009
+      { iso(1) identified-organization(3) dod(6) internet(1)
+        security(5) mechanisms(5) pkix(7) id-mod(0)
+        id-mod-pkix1-explicit-02(51) }
+
+  OneAsymmetricKey
+    FROM AsymmetricKeyPackageModuleV1
+      { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
+        pkcs-9(9) smime(16) modules(0)
+        id-mod-asymmetricKeyPkgV1(50) }
+
+  RSAPublicKey, ECPoint
+    FROM PKIXAlgs-2009
+      { iso(1) identified-organization(3) dod(6)
+        internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
+        id-mod-pkix1-algorithms2008-02(56) }
+
+  sa-rsaSSA-PSS
+    FROM PKIX1-PSS-OAEP-Algorithms-2009
+       {iso(1) identified-organization(3) dod(6) internet(1) security(5)
+       mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-rsa-pkalgs-02(54)}
+
+;
+
+--
+-- Object Identifiers
+--
+
+-- Defined in ITU-T X.690
+der OBJECT IDENTIFIER ::=
+  {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}
+
+
+-- Just for testing, to be assigned by IANA
+id-raw-key OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) raw(999) 1 }
+
+
+--
+-- Signature Algorithm
+--
+
+
+--
+-- Composite Signature basic structures
+--
+
+CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING
+
+CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING
+                                CompositeSignaturePublicKey ENCODED BY der)
+
+CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING
+                                CompositeSignaturePublicKey ENCODED BY der)
+
+CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey
+
+CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING
+
+RsaCompositeSignaturePublicKey ::= SEQUENCE {
+        firstPublicKey BIT STRING (ENCODED BY id-raw-key),
+        secondPublicKey BIT STRING (CONTAINING RSAPublicKey)
+      }
+
+EcCompositeSignaturePublicKey ::= SEQUENCE {
+        firstPublicKey BIT STRING (ENCODED BY id-raw-key),
+        secondPublicKey BIT STRING (CONTAINING ECPoint)
+      }
+
+EdCompositeSignaturePublicKey ::= SEQUENCE {
+        firstPublicKey BIT STRING (ENCODED BY id-raw-key),
+        secondPublicKey BIT STRING (ENCODED BY id-raw-key)
+      }
+
+-- Composite Signature Value is just a sequence of OCTET STRINGS
+
+--   CompositeSignaturePair{FirstSignatureValue, SecondSignatureValue} ::=
+--     SEQUENCE {
+--      signaturevalue1 FirstSignatureValue,
+--      signaturevalue2 SecondSignatureValue }
+
+-- An Explicit Compsite Signature is a set of Signatures which
+-- are composed of OCTET STRINGS
+--   ExplicitCompositeSignatureValue ::= CompositeSignaturePair {
+--       OCTET STRING,OCTET STRING}
+
+
+--
+-- Information Object Classes
+--
+
+pk-CompositeSignature {OBJECT IDENTIFIER:id, PublicKeyType}
+    PUBLIC-KEY ::= {
+      IDENTIFIER id
+      KEY PublicKeyType
+      PARAMS ARE absent
+      CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign}
+    }
+
+sa-CompositeSignature{OBJECT IDENTIFIER:id,
+   PUBLIC-KEY:publicKeyType }
+      SIGNATURE-ALGORITHM ::=  {
+         IDENTIFIER id
+         VALUE CompositeSignatureValue
+         PARAMS ARE absent
+         PUBLIC-KEYS {publicKeyType}
+      }
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA44-RSA2048-PSS-SHA256 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 21 }
+
+pk-MLDSA44-RSA2048-PSS-SHA256 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA44-RSA2048-PSS-SHA256,
+  RsaCompositeSignaturePublicKey}
+
+sa-MLDSA44-RSA2048-PSS-SHA256 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA44-RSA2048-PSS-SHA256,
+       pk-MLDSA44-RSA2048-PSS-SHA256 }
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA44-RSA2048-PKCS15-SHA256 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 22 }
+
+pk-MLDSA44-RSA2048-PKCS15-SHA256 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA44-RSA2048-PKCS15-SHA256,
+  RsaCompositeSignaturePublicKey}
+
+sa-MLDSA44-RSA2048-PKCS15-SHA256 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA44-RSA2048-PKCS15-SHA256,
+       pk-MLDSA44-RSA2048-PKCS15-SHA256 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA44-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 23 }
+
+pk-MLDSA44-Ed25519-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA44-Ed25519-SHA512,
+  EdCompositeSignaturePublicKey}
+
+sa-MLDSA44-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA44-Ed25519-SHA512,
+       pk-MLDSA44-Ed25519-SHA512 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA44-ECDSA-P256-SHA256 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 24 }
+
+pk-MLDSA44-ECDSA-P256-SHA256 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA44-ECDSA-P256-SHA256,
+  EcCompositeSignaturePublicKey}
+
+sa-MLDSA44-ECDSA-P256-SHA256 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA44-ECDSA-P256-SHA256,
+       pk-MLDSA44-ECDSA-P256-SHA256 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 25 }
+
+pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
+  EcCompositeSignaturePublicKey}
+
+sa-MLDSA44-ECDSA-brainpoolP256r1-SHA256 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
+       pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA65-RSA3072-PSS-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 26 }
+
+pk-MLDSA65-RSA3072-PSS-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA65-RSA3072-PSS-SHA512,
+  RsaCompositeSignaturePublicKey}
+
+sa-MLDSA65-RSA3072-PSS-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA65-RSA3072-PSS-SHA512,
+       pk-MLDSA65-RSA3072-PSS-SHA512 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA65-RSA3072-PKCS15-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 27 }
+
+pk-MLDSA65-RSA3072-PKCS15-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA65-RSA3072-PKCS15-SHA512,
+  RsaCompositeSignaturePublicKey}
+
+sa-MLDSA65-RSA3072-PKCS15-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA65-RSA3072-PKCS15-SHA512,
+       pk-MLDSA65-RSA3072-PKCS15-SHA512 }
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA65-RSA4096-PSS-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 34 }
+
+pk-MLDSA65-RSA4096-PSS-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA65-RSA4096-PSS-SHA512,
+  RsaCompositeSignaturePublicKey}
+
+sa-MLDSA65-RSA4096-PSS-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA65-RSA4096-PSS-SHA512,
+       pk-MLDSA65-RSA4096-PSS-SHA512 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA65-RSA4096-PKCS15-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 35 }
+
+pk-MLDSA65-RSA4096-PKCS15-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA65-RSA4096-PKCS15-SHA512,
+  RsaCompositeSignaturePublicKey}
+
+sa-MLDSA65-RSA4096-PKCS15-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA65-RSA4096-PKCS15-SHA512,
+       pk-MLDSA65-RSA4096-PKCS15-SHA512 }
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA65-ECDSA-P256-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 28 }
+
+pk-MLDSA65-ECDSA-P256-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA512,
+  EcCompositeSignaturePublicKey}
+
+sa-MLDSA65-ECDSA-P256-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA65-ECDSA-P256-SHA512,
+       pk-MLDSA65-ECDSA-P256-SHA512 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 29 }
+
+pk-MLDSA65-ECDSA-brainpoolP256r1-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
+  EcCompositeSignaturePublicKey}
+
+sa-MLDSA65-ECDSA-brainpoolP256r1-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
+       pk-MLDSA65-ECDSA-brainpoolP256r1-SHA512 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA65-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 30 }
+
+pk-MLDSA65-Ed25519-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA65-Ed25519-SHA512,
+  EdCompositeSignaturePublicKey}
+
+sa-MLDSA65-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA65-Ed25519-SHA512,
+       pk-MLDSA65-Ed25519-SHA512 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA87-ECDSA-P384-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 31 }
+
+pk-MLDSA87-ECDSA-P384-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA87-ECDSA-P384-SHA512,
+  EcCompositeSignaturePublicKey}
+
+sa-MLDSA87-ECDSA-P384-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA87-ECDSA-P384-SHA512,
+       pk-MLDSA87-ECDSA-P384-SHA512 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 32 }
+
+pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
+  EcCompositeSignaturePublicKey}
+
+sa-MLDSA87-ECDSA-brainpoolP384r1-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
+       pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 }
+
+
+-- TODO: OID to be replaced by IANA
+id-MLDSA87-Ed448-SHA512 OBJECT IDENTIFIER ::= {
+   joint-iso-itu-t(2) country(16) us(840) organization(1)
+   entrust(114027) algorithm(80) composite(8) signature(1) 33 }
+
+pk-MLDSA87-Ed448-SHA512 PUBLIC-KEY ::=
+  pk-CompositeSignature{ id-MLDSA87-Ed448-SHA512,
+  EdCompositeSignaturePublicKey}
+
+sa-MLDSA87-Ed448-SHA512 SIGNATURE-ALGORITHM ::=
+    sa-CompositeSignature{
+       id-MLDSA87-Ed448-SHA512,
+       pk-MLDSA87-Ed448-SHA512 }
+
+END
+
+<CODE ENDS>
+
+
+
+
+
+
+
+

+10. IANA Considerations +

+

IANA is requested to allocate a value from the "SMI Security for PKIX Module Identifier" registry [RFC7299] for the included ASN.1 module, and allocate values from "SMI Security for PKIX Algorithms" to identify the fourteen Algorithms defined within.

+
+
+

+10.1. Object Identifier Allocations +

+

EDNOTE to IANA: OIDs will need to be replaced in both the ASN.1 module and in Table 2.

+
+
+

+10.1.1. Module Registration - SMI Security for PKIX Module Identifier +

+
    +
  • +

    Decimal: IANA Assigned - Replace TBDMOD

    +
  • +
  • +

    Description: Composite-Signatures-2023 - id-mod-composite-signatures

    +
  • +
  • +

    References: This Document

    +
  • +
+
+
+
+
+

+10.1.2. Object Identifier Registrations - SMI Security for PKIX Algorithms +

+
    +
  • +

    id-raw-key

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: Designates a public key BIT STRING with no ASN.1 structure.

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA44-RSA2048-PSS-SHA256

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA44-RSA2048-PSS-SHA256

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA44-RSA2048-PKCS15-SHA256

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA44-RSA2048-PKCS15-SHA256

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA44-Ed25519-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA44-Ed25519-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA44-ECDSA-P256-SHA256

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA44-ECDSA-P256-SHA256

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA44-ECDSA-brainpoolP256r1-SHA256

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA44-ECDSA-brainpoolP256r1-SHA256

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA65-RSA3072-PSS-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA65-RSA3072-PSS-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA65-RSA3072-PKCS15-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA65-RSA3072-PKCS15-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA65-RSA4096-PSS-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA65-RSA4096-PSS-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA65-RSA4096-PKCS15-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA65-RSA4096-PKCS15-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA65-ECDSA-P256-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA65-ECDSA-P256-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA65-ECDSA-brainpoolP256r1-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA65-ECDSA-brainpoolP256r1-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA65-Ed25519-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA65-Ed25519-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA87-ECDSA-P384-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA87-ECDSA-P384-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA87-ECDSA-brainpoolP384r1-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA87-ECDSA-brainpoolP384r1-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
  • +

    id-MLDSA87-Ed448-SHA512

    +
  • +
  • +

    Decimal: IANA Assigned

    +
  • +
  • +

    Description: id-MLDSA87-Ed448-SHA512

    +
  • +
  • +

    References: This Document

    +
  • +
+
+
+
+
+
+
+
+
+

+11. Security Considerations +

+
+
+

+11.1. PreHashing Algorithm Selection Criteria +

+

As noted in the composite signature generation process and composite signature verification process, the Message should be pre-hashed into M' with the digest algorithm specified in the composite signature algorithm identifier. The selection of the digest algorithm was chosen with the following criteria:

+
    +
  1. +

    For composites paired with RSA or ECDSA, the hashing algorithm SHA256 or SHA512 is used as part of the RSA or ECDSA signature algorithm and is therefore also used as the composite prehashing algorithm.

    +
  2. +
  3. +

    For ML-DSA [FIPS.204-ipd] signing a digest of the message is allowed as long as the hash function provides at least y bits of classical security strength against both collision and second preimage attacks. For ML-DSA-44 y is 128 bits, for ML-DSA-65 y is 192 bits and for ML-DSA-87 y is 256 bits. Therefore SHA256 is paired with RSA and ECDSA with ML-DSA-44 and SHA512 is paired with RSA and ECDSA with ML-DSA-65 and ML-DSA-87 to match the appropriate security strength.

    +
  4. +
  5. +

    Ed25519 [RFC8032] uses SHA512 internally, therefore SHA512 is used to pre-hash the message when Ed25519 is a component algorithm.

    +
  6. +
  7. +

    Ed448 [RFC8032] uses SHAKE256 internally, but to reduce the set of prehashing algorihtms, SHA512 was selected to pre-hash the message when Ed448 is a component algorithm.

    +
  8. +
+
+
+
+
+

+11.2. Policy for Deprecated and Acceptable Algorithms +

+

Traditionally, a public key, certificate, or signature contains a single cryptographic algorithm. If and when an algorithm becomes deprecated (for example, RSA-512, or SHA1), then clients performing signatures or verifications should be updated to adhere to appropriate policies.

+

In the composite model this is less obvious since implementers may decide that certain cryptographic algorithms have complementary security properties and are acceptable in combination even though one or both algorithms are deprecated for individual use. As such, a single composite public key or certificate may contain a mixture of deprecated and non-deprecated algorithms.

+

Since composite algorithms are registered independently of their component algorithms, their deprecation can be handled independently from that of their component algorithms. For example a cryptographic policy might continue to allow id-MLDSA65-ECDSA-P256-SHA512 even after ECDSA-P256 is deprecated.

+

When considering stripping attacks, one need consider the case where an attacker has fully compromised one of the component algorithms to the point that they can produce forged signatures that appear valid under one of the component public keys, and thus fool a victim verifier into accepting a forged signature. The protection against this attack relies on the victim verifier trusting the pair of public keys as a single composite key, and not trusting the individual component keys by themselves.

+

Specifically, in order to achieve this non-separability property, this specification makes two assumptions about how the verifier will establish trust in a composite public key:

+
    +
  1. +

    This specification assumes that all of the component keys within a composite key are freshly generated for the composite; ie a given public key MUST NOT appear as a component within a composite key and also within single-algorithm constructions.

    +
  2. +
  3. +

    This specification assumes that composite public keys will be bound in a structure that contains a signature over the public key (for example, an X.509 Certificate [RFC5280]), which is chained back to a trust anchor, and where that signature algorithm is at least as strong as the composite public key that it is protecting.

    +
  4. +
+

There are mechanisms within Internet PKI where trusted public keys do not appear within signed structures -- such as the Trust Anchor format defined in [RFC5914]. In such cases, it is the responsibility of implementers to ensure that trusted composite keys are distributed in a way that is tamper-resistant and does not allow the component keys to be trusted independently.

+
+
+
+
+
+
+

+12. References +

+
+
+

+12.1. Normative References +

+
+
[FIPS.204]
+
+National Institute of Standards and Technology (NIST), "Module-Lattice-Based Digital Signature Standard", , <https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf>.
+
+
[RFC2119]
+
+Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
+
+
[RFC2986]
+
+Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request Syntax Specification Version 1.7", RFC 2986, DOI 10.17487/RFC2986, , <https://www.rfc-editor.org/info/rfc2986>.
+
+
[RFC4210]
+
+Adams, C., Farrell, S., Kause, T., and T. Mononen, "Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)", RFC 4210, DOI 10.17487/RFC4210, , <https://www.rfc-editor.org/info/rfc4210>.
+
+
[RFC4211]
+
+Schaad, J., "Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)", RFC 4211, DOI 10.17487/RFC4211, , <https://www.rfc-editor.org/info/rfc4211>.
+
+
[RFC5280]
+
+Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, , <https://www.rfc-editor.org/info/rfc5280>.
+
+
[RFC5480]
+
+Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk, "Elliptic Curve Cryptography Subject Public Key Information", RFC 5480, DOI 10.17487/RFC5480, , <https://www.rfc-editor.org/info/rfc5480>.
+
+
[RFC5639]
+
+Lochter, M. and J. Merkle, "Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation", RFC 5639, DOI 10.17487/RFC5639, , <https://www.rfc-editor.org/info/rfc5639>.
+
+
[RFC5652]
+
+Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, , <https://www.rfc-editor.org/info/rfc5652>.
+
+
[RFC5758]
+
+Dang, Q., Santesson, S., Moriarty, K., Brown, D., and T. Polk, "Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA", RFC 5758, DOI 10.17487/RFC5758, , <https://www.rfc-editor.org/info/rfc5758>.
+
+
[RFC5958]
+
+Turner, S., "Asymmetric Key Packages", RFC 5958, DOI 10.17487/RFC5958, , <https://www.rfc-editor.org/info/rfc5958>.
+
+
[RFC6090]
+
+McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090, DOI 10.17487/RFC6090, , <https://www.rfc-editor.org/info/rfc6090>.
+
+
[RFC6234]
+
+Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, DOI 10.17487/RFC6234, , <https://www.rfc-editor.org/info/rfc6234>.
+
+
[RFC7748]
+
+Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves for Security", RFC 7748, DOI 10.17487/RFC7748, , <https://www.rfc-editor.org/info/rfc7748>.
+
+
[RFC8032]
+
+Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/RFC8032, , <https://www.rfc-editor.org/info/rfc8032>.
+
+
[RFC8174]
+
+Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
+
+
[RFC8410]
+
+Josefsson, S. and J. Schaad, "Algorithm Identifiers for Ed25519, Ed448, X25519, and X448 for Use in the Internet X.509 Public Key Infrastructure", RFC 8410, DOI 10.17487/RFC8410, , <https://www.rfc-editor.org/info/rfc8410>.
+
+
[RFC8411]
+
+Schaad, J. and R. Andrews, "IANA Registration for the Cryptographic Algorithm Object Identifier Range", RFC 8411, DOI 10.17487/RFC8411, , <https://www.rfc-editor.org/info/rfc8411>.
+
+
[X.690]
+
+ITU-T, "Information technology - ASN.1 encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)", ISO/IEC 8825-1:2015, .
+
+
+
+
+
+
+

+12.2. Informative References +

+
+
[ANSSI2024]
+
+French Cybersecurity Agency (ANSSI), Federal Office for Information Security (BSI), Netherlands National Communications Security Agency (NLNCSA), and Swedish National Communications Security Authority, Swedish Armed Forces, "Position Paper on Quantum Key Distribution", n.d., <https://cyber.gouv.fr/sites/default/files/document/Quantum_Key_Distribution_Position_Paper.pdf>.
+
+
[Bindel2017]
+
+Bindel, N., Herath, U., McKague, M., and D. Stebila, "Transitioning to a quantum-resistant public key infrastructure", , <https://link.springer.com/chapter/10.1007/978-3-319-59879-6_22>.
+
+
[BSI2021]
+
+Federal Office for Information Security (BSI), "Quantum-safe cryptography - fundamentals, current developments and recommendations", , <https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf>.
+
+
[I-D.becker-guthrie-noncomposite-hybrid-auth]
+
+Becker, A., Guthrie, R., and M. J. Jenkins, "Non-Composite Hybrid Authentication in PKIX and Applications to Internet Protocols", Work in Progress, Internet-Draft, draft-becker-guthrie-noncomposite-hybrid-auth-00, , <https://datatracker.ietf.org/doc/html/draft-becker-guthrie-noncomposite-hybrid-auth-00>.
+
+
[I-D.driscoll-pqt-hybrid-terminology]
+
+D, F., "Terminology for Post-Quantum Traditional Hybrid Schemes", Work in Progress, Internet-Draft, draft-driscoll-pqt-hybrid-terminology-01, , <https://datatracker.ietf.org/doc/html/draft-driscoll-pqt-hybrid-terminology-01>.
+
+
[I-D.guthrie-ipsecme-ikev2-hybrid-auth]
+
+Guthrie, R., "Hybrid Non-Composite Authentication in IKEv2", Work in Progress, Internet-Draft, draft-guthrie-ipsecme-ikev2-hybrid-auth-00, , <https://datatracker.ietf.org/doc/html/draft-guthrie-ipsecme-ikev2-hybrid-auth-00>.
+
+
[I-D.hale-pquip-hybrid-signature-spectrums]
+
+Bindel, N., Hale, B., Connolly, D., and F. D, "Hybrid signature spectrums", Work in Progress, Internet-Draft, draft-hale-pquip-hybrid-signature-spectrums-01, , <https://datatracker.ietf.org/doc/html/draft-hale-pquip-hybrid-signature-spectrums-01>.
+
+
[I-D.ietf-lamps-dilithium-certificates]
+
+Massimo, J., Kampanakis, P., Turner, S., and B. Westerbaan, "Internet X.509 Public Key Infrastructure: Algorithm Identifiers for ML-DSA", Work in Progress, Internet-Draft, draft-ietf-lamps-dilithium-certificates-04, , <https://datatracker.ietf.org/doc/html/draft-ietf-lamps-dilithium-certificates-04>.
+
+
[I-D.massimo-lamps-pq-sig-certificates]
+
+Massimo, J., Kampanakis, P., Turner, S., and B. Westerbaan, "Algorithms and Identifiers for Post-Quantum Algorithms", Work in Progress, Internet-Draft, draft-massimo-lamps-pq-sig-certificates-00, , <https://datatracker.ietf.org/doc/html/draft-massimo-lamps-pq-sig-certificates-00>.
+
+
[I-D.ounsworth-pq-composite-kem]
+
+Ounsworth, M. and J. Gray, "Composite KEM For Use In Internet PKI", Work in Progress, Internet-Draft, draft-ounsworth-pq-composite-kem-01, , <https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-kem-01>.
+
+
[I-D.pala-klaussner-composite-kofn]
+
+Pala, M. and J. Klaußner, "K-threshold Composite Signatures for the Internet PKI", Work in Progress, Internet-Draft, draft-pala-klaussner-composite-kofn-00, , <https://datatracker.ietf.org/doc/html/draft-pala-klaussner-composite-kofn-00>.
+
+
[I-D.vaira-pquip-pqc-use-cases]
+
+Vaira, A., Brockhaus, H., Railean, A., Gray, J., and M. Ounsworth, "Post-quantum cryptography use cases", Work in Progress, Internet-Draft, draft-vaira-pquip-pqc-use-cases-00, , <https://datatracker.ietf.org/doc/html/draft-vaira-pquip-pqc-use-cases-00>.
+
+
[RFC3279]
+
+Bassham, L., Polk, W., and R. Housley, "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, , <https://www.rfc-editor.org/info/rfc3279>.
+
+
[RFC7292]
+
+Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A., and M. Scott, "PKCS #12: Personal Information Exchange Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, , <https://www.rfc-editor.org/info/rfc7292>.
+
+
[RFC7296]
+
+Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T. Kivinen, "Internet Key Exchange Protocol Version 2 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, , <https://www.rfc-editor.org/info/rfc7296>.
+
+
[RFC7299]
+
+Housley, R., "Object Identifier Registry for the PKIX Working Group", RFC 7299, DOI 10.17487/RFC7299, , <https://www.rfc-editor.org/info/rfc7299>.
+
+
[RFC8017]
+
+Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/RFC8017, , <https://www.rfc-editor.org/info/rfc8017>.
+
+
[RFC8446]
+
+Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, , <https://www.rfc-editor.org/info/rfc8446>.
+
+
[RFC8551]
+
+Schaad, J., Ramsdell, B., and S. Turner, "Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification", RFC 8551, DOI 10.17487/RFC8551, , <https://www.rfc-editor.org/info/rfc8551>.
+
+
+
+
+
+
+
+
+

+Appendix A. Component Algorithm Reference +

+

This section provides references to the full specification of the algorithms used in the composite constructions.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+Table 8: +Component Signature Algorithms used in Composite Constructions +
Component Signature Algorithm IDOIDSpecification
id-ML-DSA-441.3.6.1.4.1.2.267.12.4.4 + ML-DSA: [I-D.ietf-lamps-dilithium-certificates] and [FIPS.204-ipd]
id-ML-DSA-651.3.6.1.4.1.2.267.12.6.5 + ML-DSA: [I-D.ietf-lamps-dilithium-certificates] and [FIPS.204-ipd]
id-ML-DSA-871.3.6.1.4.1.2.267.12.8.7 + ML-DSA: [I-D.ietf-lamps-dilithium-certificates] and [FIPS.204-ipd]
id-Ed25519iso(1) identified-organization(3) thawte(101) 112 + Ed25519 / Ed448: [RFC8410] +
id-Ed448iso(1) identified-organization(3) thawte(101) id-Ed448(113) + Ed25519 / Ed448: [RFC8410] +
ecdsa-with-SHA256iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 + ECDSA: [RFC5758] +
ecdsa-with-SHA512iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 + ECDSA: [RFC5758] +
sha256WithRSAEncryptioniso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 11 + RSAES-PKCS-v1_5: [RFC8017] +
sha512WithRSAEncryptioniso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 13 + RSAES-PKCS-v1_5: [RFC8017] +
id-RSASA-PSSiso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 10 + RSASSA-PSS: [RFC8017] +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+Table 9: +Elliptic Curves used in Composite Constructions +
Elliptic CurveIDOIDSpecification
secp256r1iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) 7 + [RFC6090] +
secp384r1iso(1) identified-organization(3) certicom(132) curve(0) 34 + [RFC6090] +
brainpoolP256r1iso(1) identified-organization(3) teletrust(36) algorithm(3) signatureAlgorithm(3) ecSign(2) ecStdCurvesAndGeneration(8) ellipticCurve(1) versionOne(1) 7 + [RFC5639] +
brainpoolP384r1iso(1) identified-organization(3) teletrust(36) algorithm(3) signatureAlgorithm(3) ecSign(2) ecStdCurvesAndGeneration(8) ellipticCurve(1) versionOne(1) 11 + [RFC5639] +
+
+
+ + + + + + + + + + + + + + + + + + + + + +
+Table 10: +Hash algorithms used in Composite Constructions +
HashIDOIDSpecification
id-sha256joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithms(4) hashAlgs(2) 1 + [RFC6234] +
id-sha512joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithms(4) hashAlgs(2) 3 + [RFC6234] +
+
+
+
+
+
+

+Appendix B. Samples +

+
+
+

+B.1. Explicit Composite Signature Examples +

+
+
+

+B.1.1. MLDSA44-ECDSA-P256-SHA256 Public Key +

+
+
+-----BEGIN PUBLIC KEY-----
+MIIFfzANBgtghkgBhvprUAgBBAOCBWwAMIIFZwSCBSAA9DTYoQys3PVrayi9zTam
+kTzpqf6vuNI5+UaMENvnrq3Rps5LmiQ5gSXaQMu0HYjVpCEQVQWl/8nbJavELelk
+gCVn528ndGBQUChAnffxhRdxgaFmOb2SEySTnHIh6QO1UFPO2kGiGx9zU6F9xZGK
+FZFBm8B076UvRHCbaw+BTvu4o+Kg1irOFRPI3hLN4ku3si2nwWSZNhDoiLaPTfJe
+7TRziBznEyrnSV3I2Xn7QdKxIWUFOwPXWBnnk/FGG/A2HdxGpiqIWxZ0gNLNcb+j
+Cz6CWZSJhoOLoJWdOD5zyojPPrH5iFIGM96p0PZ4mv5PhmZDPA/RTIg/PcG1rywn
+OJYqAsazntGyEhHEFLRe8QYOVEbiBuv20tNzkFaaulQRdW+boStcW8NefSkKG/9D
+FgGnyR87W4Z/ieHEyIva4FBamvRm60xrblAyI0Z7II4l7LTStDzL/ghFq06RVria
+au+mY5laq8rAGmRbWkUxNeKeGOVHxjGFYB3uaAkHef0o7tSMMkCSSjiDQlNk5ReQ
+xgJMkuTRE7YRN1bDXv/0uPPjg7zfa3M0tMCD9wTXFhIk04HDLVV5WAsH0EK6Nytd
+gqnsjGCwfZb2+Fw/QytBei50DUBHpIG3da4dBrxcaRTMiQPzPzL8FaDascE0ZIJM
+9ilKvxgq02ryEHLGALFN8eZD1r6zq43KFlRzaynWBWqJ27MiUzK2dk8oC+dH5cz6
++xGXAhLJ+MipoO9k9dLg8re3dOAufsKaY5DLuuluo7dO6IF7rG9xblbiIzWpyfu3
+7kJvUdwk36QzsQNGsxpELk65LaWYnaebV7wKyIaaniLysuNCG0dIcAicxRNLgpX9
+jic5pi+BzlJI1IuPk+DqOG57pNnU7lTg3op08MUslNyeUH5yaag8DNsLG7uZHzvx
+jcqffaqcqS+v6FVmbV2tDF07jn8a754Fnn/QNgsNcdfw9Ov4w7Ty+q5nT2wg2Lsg
+bAuzN6b6FiWEuHHMw/I5aIL5cLj2GUpjHtlUHL4KEHpxZ2J5jbBgeqpTWEy1TuPQ
+R34lryVASmue/kmk2liah6wNK5RXlGa8uidBm7RT8b5SkIMsrosLx9KpC5lKobzn
+8ttK1NSy0ZuMDw9wtnePUbROGjEuw5Na/K1VgO68dATj/7rscvz7C+ZuQORrt88X
++OZmoyw+fEDWAocDnhzI6rJIHLPB0p+rSJ8iSKZpFZYeIy+CD0t6E98RJQHll8BJ
+lLyJiMT0xAyelOMzrCJayHxD01aLw6LLOddFbiIRMq4lni5Ha4noWmdO2C80xy3A
+jskUEK5sbD8KFl910JUHwaGvb/gDCqW+n10mRa9+cB0tRVjo5OZeSiB01Bkagu7a
+f+bRv2i8cBa2ZoGVyW3xFFFhIkHzLgHaU+RLaGwJDe0qxKtwKYz5c/YpAsH+lodM
+NV2E/PzHtNY+sg0PijblN6IVO+yiLkxJspKIjf0I1+s8hczhz3QkLRed7dU2nvID
+puJQfgraKyS6rawlqLyWo66/PDtdd3tngw50wnDNZik0hz/usDc6o7IN5J9ha7XO
+0vZQluMb9R5l+W6RLD2nRd4mlKVqm/Yfq0R8PKoIh8f7uLVk1kbN4prkfpsokvqR
+rli5h4URG7WCNvp4bg/i1Ix/CEEjH56LRj83dhVB0O6WXorrZMAChQShMhwnEgeS
+USaB5au7xRAM+9fWvF9cmju3hXSTT1zv0owyoSgp36OHcy2HzwZXxA7YWtRDbhMX
+BEEEkSZvSVDhZlBXhAkaTBxlrRt624URpHlDVrd0njnPiR92XNs+NTjjvAImETMh
+EPbQ/KPspugi6gkrLFhcmy/OiA==
+-----END PUBLIC KEY-----
+
+
+
+
+
+
+

+B.1.2. MLDSA44-ECDSA-P256 Private Key +

+
+
+-----BEGIN PRIVATE KEY-----
+MIIPmQIBADANBgtghkgBhvprUAgBBASCD4Mwgg9/BIIPAAD0NNihDKzc9WtrKL3N
+NqaRPOmp/q+40jn5RowQ2+euyt08tCb8n+fyXPTeYUqTRyok4CwyZDOBvRgzjQPo
+ViTIHTQcWno6KkNnRaLLCmpapjHbTJvbRoBb09RllNQwzuM4KaISDYuwUNikESKz
+ZUGAIGIyMiSHReImUtAkEkTGgcQEBIAGIsQ2ZoiERQpEJVsGKRzDiCEHaYnEjBJA
+MeSmKFkIKiAXYUoYaZQkhkEWYSSFLQkkYgoEKiICZhMAIuDEAMu2YJu2aBmXjQCC
+ASMEBVAoaFkiAJhEUcySIaAIEQgyISMTbBM4JqLESIMmRWDISQkHTplGahiQTMQY
+JpQ2ZKQGgWMUaNCEkdAmZQHBKdJAShG0TYCikCNCcNLAcYkgQiOhcUHCZYCGROQo
+YOEkZiRGkFnGiAsoYEsIYCOxaFQSAYy4EYIYRsQYRNuUSNooaUQGIMg0DdioAAsQ
+RYMghgSlUNK4gVLACQgRSAkxDIs0QhEoRoKEQMMoMMSmTWNEDqOkMRw2AWSgUAQR
+MaSiYAgmkeFGbtuIhFRAcSQyUWMYZIKEQNo0KkmkgVsiEcMGJJQgMko2JFKGMBmQ
+RQzHhBsAASQZbNEQcVCGYZkIjkMYKpJChKEUhQSRgCTEIaEkkYSUQeMmkmSibGK0
+TBopYAAmgVogBmIkauGADBKHKAoVQRhCYhoXUsCYgOCYJRDFgYsCLAuiEFE0ghEo
+UQwSAUK2AUSAKMQobSMmcRQVbEQUDgA0MNwEhEjEaAQTaAKCjAMEcAyBSVgUZkAS
+jUIQkWTCCRQVcAA2KllIAAIRQoLELRuzaCIRiZkGbNpIgYBIAQggIuOUTIzCMCI3
+BoIIBcuEBYLIgMmEcZmkkEAwMEGSZRKXQKIEkcGERIFCCeEyIouYaQoEhsM2jdBI
+JhS5YBAycSEEkOSAiGIYJgiQbVKkYZLIARmXTBvJjRIWYMI0RBGUkdQmZuO0QaOg
+gcQGjNI4EFIyBVREAsMkIRoBClRIbgMUgVFIUgNCcVGmhBC3kdtEBBw0EVlEiRsC
+YuKYCZumMFwyCMmCaYAoCgAWLBFAIqBELAGxcBoJQlKmYKCWgMKEUYQGZMqiDMqm
+JRnHIJEoaAJHgByhBBIpCeQiBNAYSSEQQNKUUaMyMYs2DnQ5Y0NY1PJ+TCmdgiin
+NmiycZW2gsYQVPr8uCyDiEcLELhhZoHkFkvKWQP2Y1iviJ+tgiKFSwbMipJmOq/I
+hovLcLpcDIwxtiwJPsGtozGSuMwx/Se6MpI3omJT/z9a3fwV8gLxcbNiWw2UjB3N
+3/BPb7Jr4F7Fu+9G4nwZI4kK4LRJ4/zgcqb0Jq/2vhLIoEQ5TpHdn2KSqrY4nHH7
+Hmh74HaXrY7JHqUgj2xVwZQuW09AnjIpy7NQW8I3oNkRxf2YNqIM6pIgAHDDNbkS
+FeJVp+5EhxmUTDgOwGM3kZg4enFT13auoY8iCbt8PhO3STSpo+A2he1wlmodsBvr
+h42v9TpKJJW/2w0IB432RGbjCW0jiIJa5FO1jh3eH822vLnVs9VescBszHDjQRu3
++fyxFIAc/0jYYTgIFfrPqEwXZC2FA3UfpqQE7KtjTv2gN64E0/hSuBTrH2NG9Pvt
+zlj04xtjMqiI3vULH9nTRcufSF/xO3POtty3zvEdBf/d+v9DKn7q6qaAB4rW6j4r
+O9+WwiSowZ2lYv7vQnHT90bVKn0jHGGcHgfAlSNg7ecWBL8k+iL/U7zeAUAl9FNT
+44X1eNYZZcy8MqjGiQSTIHFAQd3v93gflbAQVHC/6KDnn1OxbrhOgft2VgjjqggQ
+W/jFfO/TDmaLvS3Igxsgud2H3byHOSLh2nd2bHm8yXXVUMJ3otg2/x8KnDS4Du/b
+ORJSskflf0zUkfiDILHGm48bwYsvDxXc7rnIvqI7B4rrH2DzcG5Ve/kYUtOikvXu
+hx01JbV2xQQfIvGWjpZWoG9GticpP3ZyRzMDSuPudiLBjVhQ0lutNvzuLclqGTVX
+LshLtF1oF5nmFQTi/GExi4oUZ4ckD2V5om/fcG9Wdnn/IFVAqO0DM0SzCw1kdKbP
+X97j9nOmgrrT9lnI4O5cQckjvfvGrbbM4oRNW7aInwA/SpYaXt+BnvkEt/BXTuQx
+lg/g7asWzUSEqKoxM2wC5E8FqiupKMqKrdZP8wRpOrv2KikVMg9d9PM4GrCVcjKI
+Xv1fyZW/H3eugnrr8/Po9J8RZkkqBUTVMXPAIju63yuqcMvU1AQRyiMo8BcdFRo4
+hufRFe2K7APSGybKE5LgVALUGZ70GUl85bYVjnLslcHeZdySnXo82H+HNTM8UqKc
+9BXGAJS+1Zb12fgTemZO/5PBfcgS+axLiRwUCSZDA/Hlev86OgHsjnRt3JjuNfX0
+L3bHZ+9DTzRADJnm7Lyj7ylKlUuvoH+7WaPMmBiduXuuQ/k1iLOMq0TZa/T31UtP
+izx6M9+1+SirJS0Dzgy5XDSCfc/I0u/lUtf1kynwSmAlLSG7YAbt1Ua/2k+5CW31
+UZZdaw2HSVGFnT2PwSlXRnlq+FEdXVbzJA39oS/CNEOM/qdnRL8cU4rU40Xn0sm+
+egIjYlKjKml1Dg+hVFuYvk7tY+ZUEk8mOuTFlsB1f125X80L5EnhYOeTHpn+muEt
+GyoMCpdBwxV5AoQi/5DhzPqO8IPUwsjXHRKONcP2s6ibUC58HqkCmocTRJApAu9K
+GZQnmcXwrSvV09AMhND3oNTIRup+pi1TSfETZGyYqouPJNgf5/3rzICwrxBfBz3c
++CDn0ELMhADS9lBQ2iLENSTYE9jCaoX+RFKQJIkJWd1GMHs6xoyNxSf9udsShyyS
+aXPor4zprUON9lhzh4wcTZT9gsgkb1TesKRzkUe4/uzeDcAr2K3QgRq4H5a2F4Vt
+ZJ13x+9sSrnAqPF8YMmwHEmky6Ny/m37lGKAbupMfW/vopEyQf4G9F7bqgiTJVPX
+MmsvnYL0UF4LcQ5t22Vw4B1DVkrJ0itoQxFJHl4k1KFIv1k4XYVviKgmLHaNWhQo
+N3rVN8sRQ+adm39D4ckB+btqNbD10hUxDiuJcouslXcYl8AoLJ82PdfItIbECKdA
+zbF8HAKTMHHsexPls0BrDOrgH/Y/tvp2Gmgup56OwQNq2Hpnxnh2yNV64yk1A9Sm
+4UhGenN0vIo2Ro3+RKo1pAEf6MJG7ZeLGb4xFiDfSweKQaIEtDuR86rw/AYGXlfu
+OXJaNWeMDNmu/WltbjSWflpIpIKYFF8sdhkHfQpTX/XUaVZR93rS4ChtORKha+UL
+/56l2DFTItDoOJ4R05PAgq6LEGz5Nr/dCRoAcpsXyj28BS3iD215llxthHMWdB6l
+LUBX4IjSn+ZG8EeDCRy3E5ZBAPQ02KEMrNz1a2sovc02ppE86an+r7jSOflGjBDb
+566t0abOS5okOYEl2kDLtB2I1aQhEFUFpf/J2yWrxC3pZIAlZ+dvJ3RgUFAoQJ33
+8YUXcYGhZjm9khMkk5xyIekDtVBTztpBohsfc1OhfcWRihWRQZvAdO+lL0Rwm2sP
+gU77uKPioNYqzhUTyN4SzeJLt7Itp8FkmTYQ6Ii2j03yXu00c4gc5xMq50ldyNl5
++0HSsSFlBTsD11gZ55PxRhvwNh3cRqYqiFsWdIDSzXG/ows+glmUiYaDi6CVnTg+
+c8qIzz6x+YhSBjPeqdD2eJr+T4ZmQzwP0UyIPz3Bta8sJziWKgLGs57RshIRxBS0
+XvEGDlRG4gbr9tLTc5BWmrpUEXVvm6ErXFvDXn0pChv/QxYBp8kfO1uGf4nhxMiL
+2uBQWpr0ZutMa25QMiNGeyCOJey00rQ8y/4IRatOkVa4mmrvpmOZWqvKwBpkW1pF
+MTXinhjlR8YxhWAd7mgJB3n9KO7UjDJAkko4g0JTZOUXkMYCTJLk0RO2ETdWw17/
+9Ljz44O832tzNLTAg/cE1xYSJNOBwy1VeVgLB9BCujcrXYKp7IxgsH2W9vhcP0Mr
+QXoudA1AR6SBt3WuHQa8XGkUzIkD8z8y/BWg2rHBNGSCTPYpSr8YKtNq8hByxgCx
+TfHmQ9a+s6uNyhZUc2sp1gVqiduzIlMytnZPKAvnR+XM+vsRlwISyfjIqaDvZPXS
+4PK3t3TgLn7CmmOQy7rpbqO3TuiBe6xvcW5W4iM1qcn7t+5Cb1HcJN+kM7EDRrMa
+RC5OuS2lmJ2nm1e8CsiGmp4i8rLjQhtHSHAInMUTS4KV/Y4nOaYvgc5SSNSLj5Pg
+6jhue6TZ1O5U4N6KdPDFLJTcnlB+cmmoPAzbCxu7mR878Y3Kn32qnKkvr+hVZm1d
+rQxdO45/Gu+eBZ5/0DYLDXHX8PTr+MO08vquZ09sINi7IGwLszem+hYlhLhxzMPy
+OWiC+XC49hlKYx7ZVBy+ChB6cWdieY2wYHqqU1hMtU7j0Ed+Ja8lQEprnv5JpNpY
+moesDSuUV5RmvLonQZu0U/G+UpCDLK6LC8fSqQuZSqG85/LbStTUstGbjA8PcLZ3
+j1G0ThoxLsOTWvytVYDuvHQE4/+67HL8+wvmbkDka7fPF/jmZqMsPnxA1gKHA54c
+yOqySByzwdKfq0ifIkimaRWWHiMvgg9LehPfESUB5ZfASZS8iYjE9MQMnpTjM6wi
+Wsh8Q9NWi8OiyznXRW4iETKuJZ4uR2uJ6FpnTtgvNMctwI7JFBCubGw/ChZfddCV
+B8Ghr2/4Awqlvp9dJkWvfnAdLUVY6OTmXkogdNQZGoLu2n/m0b9ovHAWtmaBlclt
+8RRRYSJB8y4B2lPkS2hsCQ3tKsSrcCmM+XP2KQLB/paHTDVdhPz8x7TWPrIND4o2
+5TeiFTvsoi5MSbKSiI39CNfrPIXM4c90JC0Xne3VNp7yA6biUH4K2iskuq2sJai8
+lqOuvzw7XXd7Z4MOdMJwzWYpNIc/7rA3OqOyDeSfYWu1ztL2UJbjG/UeZflukSw9
+p0XeJpSlapv2H6tEfDyqCIfH+7i1ZNZGzeKa5H6bKJL6ka5YuYeFERu1gjb6eG4P
+4tSMfwhBIx+ei0Y/N3YVQdDull6K62TAAoUEoTIcJxIHklEmgeWru8UQDPvX1rxf
+XJo7t4V0k09c79KMMqEoKd+jh3Mth88GV8QO2FrUQ24TFwR5MHcCAQEEIOu1IEuD
+uM16fyp4k0FSfEP+H1ka3o07lfZmk56nHuiloAoGCCqGSM49AwEHoUQDQgAEkSZv
+SVDhZlBXhAkaTBxlrRt624URpHlDVrd0njnPiR92XNs+NTjjvAImETMhEPbQ/KPs
+pugi6gkrLFhcmy/OiA==
+-----END PRIVATE KEY-----
+
+
+
+
+
+
+
+

+B.1.3. MLDSA44-ECDSA-P256 Self-Signed X509 Certificate +

+
+
+-----BEGIN CERTIFICATE-----
+MIIP9zCCBhigAwIBAgIUUFXlmVgQD4nQC6Tzr4OlRKxVYYQwDQYLYIZIAYb6a1AI
+AQQwEjEQMA4GA1UEAwwHb3FzdGVzdDAeFw0yMzEyMTkxOTIzNDBaFw0yNDEyMTgx
+OTIzNDBaMBIxEDAOBgNVBAMMB29xc3Rlc3QwggV/MA0GC2CGSAGG+mtQCAEEA4IF
+bAAwggVnBIIFIAD0NNihDKzc9WtrKL3NNqaRPOmp/q+40jn5RowQ2+eurdGmzkua
+JDmBJdpAy7QdiNWkIRBVBaX/ydslq8Qt6WSAJWfnbyd0YFBQKECd9/GFF3GBoWY5
+vZITJJOcciHpA7VQU87aQaIbH3NToX3FkYoVkUGbwHTvpS9EcJtrD4FO+7ij4qDW
+Ks4VE8jeEs3iS7eyLafBZJk2EOiIto9N8l7tNHOIHOcTKudJXcjZeftB0rEhZQU7
+A9dYGeeT8UYb8DYd3EamKohbFnSA0s1xv6MLPoJZlImGg4uglZ04PnPKiM8+sfmI
+UgYz3qnQ9nia/k+GZkM8D9FMiD89wbWvLCc4lioCxrOe0bISEcQUtF7xBg5URuIG
+6/bS03OQVpq6VBF1b5uhK1xbw159KQob/0MWAafJHztbhn+J4cTIi9rgUFqa9Gbr
+TGtuUDIjRnsgjiXstNK0PMv+CEWrTpFWuJpq76ZjmVqrysAaZFtaRTE14p4Y5UfG
+MYVgHe5oCQd5/Sju1IwyQJJKOINCU2TlF5DGAkyS5NETthE3VsNe//S48+ODvN9r
+czS0wIP3BNcWEiTTgcMtVXlYCwfQQro3K12CqeyMYLB9lvb4XD9DK0F6LnQNQEek
+gbd1rh0GvFxpFMyJA/M/MvwVoNqxwTRkgkz2KUq/GCrTavIQcsYAsU3x5kPWvrOr
+jcoWVHNrKdYFaonbsyJTMrZ2TygL50flzPr7EZcCEsn4yKmg72T10uDyt7d04C5+
+wppjkMu66W6jt07ogXusb3FuVuIjNanJ+7fuQm9R3CTfpDOxA0azGkQuTrktpZid
+p5tXvArIhpqeIvKy40IbR0hwCJzFE0uClf2OJzmmL4HOUkjUi4+T4Oo4bnuk2dTu
+VODeinTwxSyU3J5QfnJpqDwM2wsbu5kfO/GNyp99qpypL6/oVWZtXa0MXTuOfxrv
+ngWef9A2Cw1x1/D06/jDtPL6rmdPbCDYuyBsC7M3pvoWJYS4cczD8jlogvlwuPYZ
+SmMe2VQcvgoQenFnYnmNsGB6qlNYTLVO49BHfiWvJUBKa57+SaTaWJqHrA0rlFeU
+Zry6J0GbtFPxvlKQgyyuiwvH0qkLmUqhvOfy20rU1LLRm4wPD3C2d49RtE4aMS7D
+k1r8rVWA7rx0BOP/uuxy/PsL5m5A5Gu3zxf45majLD58QNYChwOeHMjqskgcs8HS
+n6tInyJIpmkVlh4jL4IPS3oT3xElAeWXwEmUvImIxPTEDJ6U4zOsIlrIfEPTVovD
+oss510VuIhEyriWeLkdriehaZ07YLzTHLcCOyRQQrmxsPwoWX3XQlQfBoa9v+AMK
+pb6fXSZFr35wHS1FWOjk5l5KIHTUGRqC7tp/5tG/aLxwFrZmgZXJbfEUUWEiQfMu
+AdpT5EtobAkN7SrEq3ApjPlz9ikCwf6Wh0w1XYT8/Me01j6yDQ+KNuU3ohU77KIu
+TEmykoiN/QjX6zyFzOHPdCQtF53t1Tae8gOm4lB+CtorJLqtrCWovJajrr88O113
+e2eDDnTCcM1mKTSHP+6wNzqjsg3kn2Frtc7S9lCW4xv1HmX5bpEsPadF3iaUpWqb
+9h+rRHw8qgiHx/u4tWTWRs3imuR+myiS+pGuWLmHhREbtYI2+nhuD+LUjH8IQSMf
+notGPzd2FUHQ7pZeiutkwAKFBKEyHCcSB5JRJoHlq7vFEAz719a8X1yaO7eFdJNP
+XO/SjDKhKCnfo4dzLYfPBlfEDtha1ENuExcEQQSRJm9JUOFmUFeECRpMHGWtG3rb
+hRGkeUNWt3SeOc+JH3Zc2z41OOO8AiYRMyEQ9tD8o+ym6CLqCSssWFybL86IoyEw
+HzAdBgNVHQ4EFgQUhcS/LyOtUFUrF+FJxoSERDrtcXQwDQYLYIZIAYb6a1AIAQQD
+ggnIADCCCcMDggl1AMX5C7IKC8y1AX2ANKQWQWycGovPVFkiv+qctjfWt0jaErT1
+XnR80WfR3XX1rIIZ6jG1ulkLdUGx2tFcu8Qeb0umxvYWYC6htzvGw+bjxcRm0DES
+d+bkwWIBzdK23b9WqBNLqvzNccgAPXvP6PwrLxCz+sEnWcCDDqgeHphbYf3vzedR
+uMvIsRYqGO09qt/tWu3JG5nwGiX+6t/YFgE5knii3sXdlHWZQ+nSAnekc2sgtCV4
+cA0Lg01kBi+AZGelNuVK3EtgKJ0VTP5DQn5D1dLn/RGbqlMngsNs4xUlIFyvnJ8l
+UZp6+VtfE2fWRDW4yQ4ob4Ed2KEWMtWa1GaFtIfUjDGyqYLwMOJUjE5fmhLxioqS
+pk/cST+AaK5iNZzlDRC220hGOIOsiyf7UQKw+bFTENVqyXrYgTmns9zg+mc5KeZj
+hE6IMFMtkQyJnRVWUL1eRviu1JL90Tcmvw1gvKdGFPDe4A7FWx0tDyAVY1wVd/sd
+Lylt5QvBaIqgrtc4rDeS5pHGNdgy3zsi1YYpet5pyfQwZCtmqRggBDTCmH7nTfrV
+rXDbsUm0euCK+YMwbi6DbpDV5mQrUqDX1MGk0RFDzlKRtTWrvxhhCVLgV/l/ZVgi
+bEuFQg6POuCn0IA2jFJyza2TK8p82RAZbcvtM8XdJVhM0okKIRyi/8lw2kbX/p5L
+l7vMmD0xPOezi2FQMxev9460Seb6FtOlvFptsLoTw4grUTQHl9brftzPAhVmUBBY
+wGffj4rl70m5fHZzL3YXpxkr4jlqG8tKJc9370Emh9xXV4KMuo2Us+vnRUN+9QeX
+tvDaG70jX3+760hTl4qDqMWfXY1nXhCeHWGCCmn2Yq8ULdYtIjZIMcHCXAvy68jv
+7vkM5xQzDdgRMXop1Pj3aZLRI0boQ4OuR16sxmmpPUIGanfmDbvrdBBNucNcDYDy
+BU5QpuCEZ8yHs94TSWLO9KP9i+IlL35TGG2zIbwbhI15HKOWzZU9ncoC2BOF6zhw
+u60tdBvy5O8pinjMBQKVDPMbrIKjfCUK4f0YQ1/Bk4ssPogQNk3sRYJqWZ0MvElk
+q3674KpN0OVB/kJFdAB1Uqpk4ARnZ7SsO8B/6u7rRNdthHSRsu4Fhe31EE0VUoUh
+x3GQM/7gTk9El2jDBlZxwEpPEtTqARgp0ad6EJnMcIW0PEKr56HUFqfxKVjJWagV
+fhtKzskghDS5lRpDY3vPq1Cq8qSl1ojcij5zm0BxI/cJIjh41RnW5D3kjt3r3Fzo
+an4pPZkXzZm9/iGAoFAy7BThfg4PXVq2BMCNZPdASQjIiPEWklylW9iX+g/12iCV
+Gy7F/JOG0SOH5/2d12gRDDiwn6k1KDwKPDa9htaPBGaNNXLIpr/Wb68GtTkNs1TG
+e7Sf9aigE9BtTGgeniJ1Gn/aV9LGQFqRRQsnqB98bMKABZi0RjZ9yebLj6lwSFXU
+pTdq/YNnBGwAmOm/HXzksOHJOjh20iDPhLjfMB6Fi+XkWVZ0TWzV2ZwOtM56tY+a
+QoauIHR30QYtGZMI38HpVeLSj+iNUEKbE6kY5c69Bjalwa1pCqb9aP5VnKOkMA+3
+qQ6c2ggxgudchBSXK/BZw4n4l7IvHu9wEMvsVh9mt/SAGkK53k28RDkNtX7+jfJR
+5/q7Qp626ts6Sc8rG6BmZoJIJnUXjeOcqlAoDXYRGuxCw6Jm91DL9j4t3m0bQhub
+hUt9diovZ/hw2hOng+xT/oSVvauPHFpxSUu3NVcncjIljD+0U3y6cn9VnE7oFNSU
+G3HadJlVTZncMrWYo954Wt3cwNA1Opcq+5Tlu76laOWJ/4eRcvOwmxrKZHUW8Tmu
+qPPsAOTagFmMxOBkLzIaq39SZxHkw61SdJxXlKAtmZYnNvwT2NGpauF6P6G0FHAO
+Ucfu/DDpAdKZ/GGpVxC2ttfDCzO3iya139M5fbg32RpI0q18swYFhUAqszdAPihc
+4lpCGw9JdrO8i1JhB+IORJegJRPs08DYUNv7nzSbOi03iYY/QHtGw7ka5AGLfkY8
+ajiLzlXwI2xMB6XBqUsAH2VxTRPJ3N/kGTzFvhiGBOYx8+jO/FqEa5E8+cafU+kW
+m9/RCpumizdVzrH5MiFh0NI9iUegdHs+hDW6GDpA3VpGi5MmmeE6Ck8UyOzDNnY9
+t53b9QxuwiYgDdw9z0KpYtGt7tRGd0qDARky8uRQZ6HFS4sNXlUFiAG9ko62CFTD
+WCALXmhtqvPcjfiDDL6qMRLevi31YnhAua/Kb0Mhja+KDM/UwRIVaB3WHhulzn7U
+pFQG0vVnwb0+VWhKsrWVJaJw1Eg9tmy5HJBsnmne+A2qG1ehBFCWJtV2MvyK8H9G
+BxaJbq7PpPlte9ID53apvkhyvag843Ar/pOiTc8J6xncJa6w+mVViUi47/ZkZCkU
+lipgCv1ZqZhQG/CERDxACulTa+0S8nO+g5CBpW6cuQVa052nRV/qhVUkQ9yzm0Pw
+vUOftuX9b/W5QXas/ysUwPAeGd2XPBmK5lByyYaW14d6GBJGmyNYv7vjrbL1xeJr
+smjnaRPipOvwEh6IE1OdsrlqfjG27+aXgfZWbCW28DAeTK7ilLB3ubyvPcoTrmX3
+DxM7OKF+MT6PAtqSM92l76PfECvyUfv/Rf+cSF/CleTIM7xfe7IOwgxPPdMEw2rH
+uS/CeJMsdBW8DwQyRcgK5h17zyaRqztATSAQK3MQ/B2f7MoXf3Z9oLpgqyBT7aiL
+/XdYk8UipIyuRK4Y9Cj2UNc3DgYhzFPQY9SO3gO483uC8Tqc2IyoKaGsNS1rWY/W
+rleqqraEmlMN9NToAa4ftZvqdWQLqH7sJcCQ1EzfbrkyrTKgjRmvRyA4n3t9Yjry
+k+ZI3xkgrUj90xfETb+Vx/JrbegfbfZ70w7yTRnSDB01cbQP4rjI2uGZVRCxXJal
+XRtaOUey+c0ZeIRp2aPrYP2DesL0Fmlc/ooSRgC8f+QHJU/7Js+WYuK8MVK/vil9
+J9FgwoCJImfRzkA9KXYaix/f4XgvFLopb6kAszAff5Zmpcq72gwWv+nEE/3M78PO
+zs9k5+wt65W3h4zelAIUM5hfgmJj4vvq53AeZP42AhcSV+bgsPg2xGM0Im7WAQ0P
+IScqN1pepq7T9/0eMEhRdXiKj5ufub/Nztfc+Ao8RVVidXt8oMnv9vf8FxgfLkpj
+dn6Mjq7Y5OXz9AAAAAAAAAAAAAAAAAAAAAAAAAAOHy09A0gAMEUCIQDD13F6CblJ
+Ll2dp7GZtR5tyKObPtvUc1s16fP3g7xhvgIga8IVcv0k6DUIApPztCsP/UByrm8k
+1nbSe/5A4mF87n0=
+-----END CERTIFICATE-----
+
+
+
+
+
+
+
+
+
+
+
+

+Appendix C. Implementation Considerations +

+
+
+

+C.1. FIPS certification +

+

One of the primary design goals of this specification is for the overall composite algorithm to be able to be considered FIPS-approved even when one of the component algorithms is not.

+

Implementors seeking FIPS certification of a composite Signature algorithm where only one of the component algorithms has been FIPS-validated or FIPS-approved should credit the FIPS-validated component algorithm with full security strength, the non-FIPS-validated component algorithm with zero security, and the overall composite should be considered at least as strong and thus FIPS-approved.

+

The authors wish to note that this gives composite algorithms great future utility both for future cryptographic migrations as well as bridging across jurisdictions, for example defining composite algorithms which combine FIPS cryptography with cryptography from a different national standards body.

+
+
+
+
+

+C.2. Backwards Compatibility +

+

The term "backwards compatibility" is used here to mean something more specific; that existing systems as they are deployed today can interoperate with the upgraded systems of the future. This draft explicitly does not provide backwards compatibility, only upgraded systems will understand the OIDs defined in this document.

+

If backwards compatibility is required, then additional mechanisms will be needed. Migration and interoperability concerns need to be thought about in the context of various types of protocols that make use of X.509 and PKIX with relation to digital signature objects, from online negotiated protocols such as TLS 1.3 [RFC8446] and IKEv2 [RFC7296], to non-negotiated asynchronous protocols such as S/MIME signed email [RFC8551], document signing such as in the context of the European eIDAS regulations [eIDAS2014], and publicly trusted code signing [codeSigningBRsv2.8], as well as myriad other standardized and proprietary protocols and applications that leverage CMS [RFC5652] signed structures. Composite simplifies the protocol design work because it can be implemented as a signature algorithm that fits into existing systems.

+
+
+

+C.2.1. Hybrid Extensions (Keys and Signatures) +

+

The use of Composite Crypto provides the possibility to process multiple algorithms without changing the logic of applications but updating the cryptographic libraries: one-time change across the whole system. However, when it is not possible to upgrade the crypto engines/libraries, it is possible to leverage X.509 extensions to encode the additional keys and signatures. When the custom extensions are not marked critical, although this approach provides the most backward-compatible approach where clients can simply ignore the post-quantum (or extra) keys and signatures, it also requires all applications to be updated for correctly processing multiple algorithms together.

+
+
+
+
+
+
+
+
+

+Appendix D. Intellectual Property Considerations +

+

The following IPR Disclosure relates to this draft:

+

https://datatracker.ietf.org/ipr/3588/

+
+
+
+
+

+Appendix E. Contributors and Acknowledgements +

+

This document incorporates contributions and comments from a large group of experts. The Editors would especially like to acknowledge the expertise and tireless dedication of the following people, who attended many long meetings and generated millions of bytes of electronic mail and VOIP traffic over the past few years in pursuit of this document:

+

Daniel Van Geest (CryptoNext), +Britta Hale, +Tim Hollebeek (Digicert), +Panos Kampanakis (Cisco Systems), +Richard Kisley (IBM), +Serge Mister (Entrust), +François Rousseau, +Falko Strenzke, +Felipe Ventura (Entrust), +Alexander Ralien (Siemens), +José Ignacio Escribano and +Jan Oupický +陳志華 (Abel C. H. Chen, Chunghwa Telecom) +林邦曄 (Austin Lin, Chunghwa Telecom)

+

We are grateful to all, including any contributors who may have been inadvertently omitted from this list.

+

This document borrows text from similar documents, including those referenced below. Thanks go to the authors of those + documents. "Copying always makes things easier and less error prone" - [RFC8411].

+
+
+

+E.1. Making contributions +

+

Additional contributions to this draft are welcome. Please see the working copy of this draft at, as well as open issues at:

+

https://github.com/lamps-wg/draft-composite-sigs

+
+
+
+
+
+
+

+Authors' Addresses +

+
+
Mike Ounsworth
+
Entrust Limited
+
2500 Solandt Road – Suite 100
+
+Ottawa, Ontario K2K 3G5 +
+
Canada
+ +
+
+
John Gray
+
Entrust Limited
+
2500 Solandt Road – Suite 100
+
+Ottawa, Ontario K2K 3G5 +
+
Canada
+ +
+
+
Massimiliano Pala
+
OpenCA Labs
+
+New York City, New York,
+
United States of America
+ +
+
+
Jan Klaussner
+
Bundesdruckerei GmbH
+
Kommandantenstr. 18
+
+10969 Berlin +
+
Germany
+ +
+
+
Scott Fluhrer
+
Cisco Systems
+ +
+
+
+ + + diff --git a/mikeo_selection_criteria/draft-ietf-lamps-pq-composite-sigs.txt b/mikeo_selection_criteria/draft-ietf-lamps-pq-composite-sigs.txt new file mode 100644 index 0000000..3fc1773 --- /dev/null +++ b/mikeo_selection_criteria/draft-ietf-lamps-pq-composite-sigs.txt @@ -0,0 +1,2338 @@ + + + + +LAMPS M. Ounsworth +Internet-Draft J. Gray +Intended status: Standards Track Entrust +Expires: 30 March 2025 M. Pala + OpenCA Labs + J. Klaussner + Bundesdruckerei GmbH + S. Fluhrer + Cisco Systems + 26 September 2024 + + + Composite ML-DSA for use in Internet PKI + draft-ietf-lamps-pq-composite-sigs-latest + +Abstract + + This document introduces a set of signature schemes that use pairs of + cryptographic elements such as public keys and signatures to combine + their security properties. These schemes effectively mitigate risks + associated with the adoption of post-quantum cryptography and are + fully compatible with existing X.509, PKIX, and CMS data structures + and protocols. This document defines thirteen specific pairwise + combinations, called ML-DSA Composite Schemes, that blend ML-DSA with + traditional algorithms such as RSA, ECDSA, Ed25519, and Ed448. These + combinations are tailored to meet security best practices and + regulatory requirements. Composite ML-DSA is applicable in any + application that would otherwise use ML-DSA, but wants the protection + against breaks or catastrophic bugs in ML-DSA. + +Status of This Memo + + This Internet-Draft is submitted in full conformance with the + provisions of BCP 78 and BCP 79. + + Internet-Drafts are working documents of the Internet Engineering + Task Force (IETF). Note that other groups may also distribute + working documents as Internet-Drafts. The list of current Internet- + Drafts is at https://datatracker.ietf.org/drafts/current/. + + Internet-Drafts are draft documents valid for a maximum of six months + and may be updated, replaced, or obsoleted by other documents at any + time. It is inappropriate to use Internet-Drafts as reference + material or to cite them other than as "work in progress." + + This Internet-Draft will expire on 30 March 2025. + +Copyright Notice + + Copyright (c) 2024 IETF Trust and the persons identified as the + document authors. All rights reserved. + + This document is subject to BCP 78 and the IETF Trust's Legal + Provisions Relating to IETF Documents (https://trustee.ietf.org/ + license-info) in effect on the date of publication of this document. + Please review these documents carefully, as they describe your rights + and restrictions with respect to this document. Code Components + extracted from this document must include Revised BSD License text as + described in Section 4.e of the Trust Legal Provisions and are + provided without warranty as described in the Revised BSD License. + +Table of Contents + + 1. Changes in -03 + 2. Introduction + 2.1. Conventions and Terminology + 3. Composite Signatures Schemes + 3.1. Composite Schemes PreHashing + 4. Cryptographic Primitives + 4.1. Key Generation + 4.2. Signature Generation + 4.3. Signature Verify + 5. Composite Key Structures + 5.1. pk-CompositeSignature + 5.2. CompositeSignaturePublicKey + 5.3. CompositeSignaturePrivateKey + 5.4. Encoding Rules + 5.5. Key Usage Bits + 6. Composite Signature Structures + 6.1. sa-CompositeSignature + 6.2. CompositeSignatureValue + 7. Algorithm Identifiers + 7.1. Domain Separators + 7.2. Notes on id-MLDSA44-RSA2048-PSS-SHA256 + 7.3. Notes on id-MLDSA65-RSA3072-PSS-SHA512 + 7.4. Notes on id-MLDSA65-RSA4096-PSS-SHA512 + 8. Use in CMS + 8.1. Underlying Components + 8.2. SignedData Conventions + 8.3. Certificate Conventions + 8.4. SMIMECapabilities Attribute Conventions + 9. ASN.1 Module + 10. IANA Considerations + 10.1. Object Identifier Allocations + 10.1.1. Module Registration - SMI Security for PKIX Module + Identifier + 10.1.2. Object Identifier Registrations - SMI Security for + PKIX Algorithms + 11. Security Considerations + 11.1. PreHashing Algorithm Selection Criteria + 11.2. Policy for Deprecated and Acceptable Algorithms + 12. References + 12.1. Normative References + 12.2. Informative References + Appendix A. Component Algorithm Reference + Appendix B. Samples + B.1. Explicit Composite Signature Examples + B.1.1. MLDSA44-ECDSA-P256-SHA256 Public Key + B.1.2. MLDSA44-ECDSA-P256 Private Key + B.1.3. MLDSA44-ECDSA-P256 Self-Signed X509 Certificate + Appendix C. Implementation Considerations + C.1. FIPS certification + C.2. Backwards Compatibility + C.2.1. Hybrid Extensions (Keys and Signatures) + Appendix D. Intellectual Property Considerations + Appendix E. Contributors and Acknowledgements + E.1. Making contributions + Authors' Addresses + +1. Changes in -03 + + * ASN.1 Module changes: + + - Renamed the module from Composite-Signatures-2023 -> Composite- + MLDSA-2024 + + - Simplified the ASN.1 module to make it more compiler-friendly + (thanks Carl!) -- should not affect wire encodings. + +2. Introduction + + The advent of quantum computing poses a significant threat to current + cryptographic systems. Traditional cryptographic algorithms such as + RSA, Diffie-Hellman, DSA, and their elliptic curve variants are + vulnerable to quantum attacks. During the transition to post-quantum + cryptography (PQC), there is considerable uncertainty regarding the + robustness of both existing and new cryptographic algorithms. While + we can no longer fully trust traditional cryptography, we also cannot + immediately place complete trust in post-quantum replacements until + they have undergone extensive scrutiny and real-world testing to + uncover and rectify potential implementation flaws. + + Unlike previous migrations between cryptographic algorithms, the + decision of when to migrate and which algorithms to adopt is far from + straightforward. Even after the migration period, it may be + advantageous for an entity's cryptographic identity to incorporate + multiple public-key algorithms to enhance security. + + Cautious implementers may opt to combine cryptographic algorithms in + such a way that an attacker would need to break all of them + simultaneously to compromise the protected data. These mechanisms + are referred to as Post-Quantum/Traditional (PQ/T) Hybrids + [I-D.driscoll-pqt-hybrid-terminology]. + + Certain jurisdictions are already recommending or mandating that PQC + lattice schemes be used exclusively within a PQ/T hybrid framework. + The use of Composite scheme provides a straightforward implementation + of hybrid solutions compatible with (and advocated by) some + governments and cybersecurity agencies [BSI2021]. + + Composite ML-DSA is applicable in any application that would + otherwise use ML-DSA, but wants the protection against breaks or + catastrophic bugs in ML-DSA. + +2.1. Conventions and Terminology + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and + "OPTIONAL" in this document are to be interpreted as described in + BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all + capitals, as shown here. These words may also appear in this + document in lower case as plain English words, absent their normative + meanings. + + This document is consistent with the terminology defined in + [I-D.driscoll-pqt-hybrid-terminology]. In addition, the following + terminology is used throughout this document: + + ALGORITHM: A standardized cryptographic primitive, as well as any + ASN.1 structures needed for encoding data and metadata needed to use + the algorithm. This document is primarily concerned with algorithms + for producing digital signatures. + + BER: Basic Encoding Rules (BER) as defined in [X.690]. + + CLIENT: Any software that is making use of a cryptographic key. This + includes a signer, verifier, encrypter, decrypter. + + COMPONENT ALGORITHM: A single basic algorithm which is contained + within a composite algorithm. + + COMPOSITE ALGORITHM: An algorithm which is a sequence of two + component algorithms, as defined in Section 5. + + DER: Distinguished Encoding Rules as defined in [X.690]. + + LEGACY: For the purposes of this document, a legacy algorithm is any + cryptographic algorithm currently in use which is not believed to be + resistant to quantum cryptanalysis. + + PKI: Public Key Infrastructure, as defined in [RFC5280]. + + POST-QUANTUM ALGORITHM: Any cryptographic algorithm which is believed + to be resistant to classical and quantum cryptanalysis, such as the + algorithms being considered for standardization by NIST. + + PUBLIC / PRIVATE KEY: The public and private portion of an asymmetric + cryptographic key, making no assumptions about which algorithm. + + SIGNATURE: A digital cryptographic signature, making no assumptions + about which algorithm. + + STRIPPING ATTACK: An attack in which the attacker is able to + downgrade the cryptographic object to an attacker-chosen subset of + original set of component algorithms in such a way that it is not + detectable by the receiver. For example, substituting a composite + public key or signature for a version with fewer components. + +3. Composite Signatures Schemes + + The engineering principle behind the definition of Composite schemes + is to define a new family of algorithms that combines the use of + cryptographic operations from two different ones: ML-DSA one and a + traditional one. The complexity of combining security properties + from the selected two algorithms is handled at the cryptographic + library or cryptographic module, thus minimal changes are expected at + the application or protocol level. Composite schemes are fully + compatible with the X.509 model: composite public keys, composite + private keys, and ciphertexts can be carried in existing data + structures and protocols such as PKCS#10 [RFC2986], CMP [RFC4210], + X.509 [RFC5280], CMS [RFC5652], and the Trust Anchor Format + [RFC5914]. + + Composite schemes are defined as cryptographic primitives that + consists of three algorithms: + + * KeyGen() -> (pk, sk): A probabilistic key generation algorithm, + which generates a public key pk and a secret key sk. + + * Sign(sk, Message) -> (signature): A signing algorithm which takes + as input a secret key sk and a Message, and outputs a signature + + * Verify(pk, Message, signature) -> true or false: A verification + algorithm which takes as input a public key, a Message, and a + signature and outputs true if the signature verifies correctly. + Thus it proves the Message was signed with the secret key + associated with the public key and verifies the integrity of the + Message. If the signature and public key cannot verify the + Message, it returns false. + + A composite signature allows the security properties of the two + underlying algorithms to be combined via standard signature + operations such as generation and verify and can be used in all + applications that use signatures without the need for changes in data + structures or protocol messages. + +3.1. Composite Schemes PreHashing + + Composite schemes' signature generation process and composite + signature verification process are designed to provide security + properties meant to address specific issues related to the use + multiple algorithms and they require the use of pre-hasing. In + Composite schemes, the value of the DER encoding of the selected + signature scheme is concatenated with the calculated Hash over the + original message. + + The output is then used as input for the Sign() and Verify() + functions. + +4. Cryptographic Primitives + +4.1. Key Generation + + To generate a new keypair for Composite schemes, the KeyGen() -> (pk, + sk) function is used. The KeyGen() function calls the two key + generation functions of the component algorithms for the Composite + keypair in no particular order. Multi-process or multi-threaded + applications might choose to execute the key generation functions in + parallel for better key generation performance. + + The generated public key structure is described in Section 5.2, while + the corresponding composite secret key structure is defined in + Section 5.3. + + The following process is used to generate composite keypair values: + + KeyGen() -> (pk, sk) + + Input: + sk_1, sk_2 Private keys for each component. + + pk_1, pk_2 Public keys for each component. + + A1, A2 Component signature algorithms. + + Output: + (pk, sk) The composite keypair. + + Function KeyGen(): + + (pk_1, sk_1) <- A1.KeyGen() + (pk_2, sk_2) <- A2.KeyGen() + + if NOT (pk_1, sk_1) or NOT (pk_2, sk_2): + // Component key generation failure + return NULL + + (pk, sk) <- encode[(pk_1, sk_1), (pk_2, sk_2)] + if NOT (pk, sk): + // Encoding failure + return False + + // Success + return (pk, sk) + + Figure 1: Composite KeyGen(pk, sk) + + The key generation functions MUST be executed for both algorithms. + Compliant parties MUST NOT use or import component keys that are used + in other contexts, combinations, or by themselves (i.e., not only in + X.509 certificates). + +4.2. Signature Generation + + Composite schemes' signatures provide important properties for multi- + key environments such as non-separability and key-binding. For more + information on the additional security properties and their + applicability to multi-key or hybrid environments, please refer to + [I-D.hale-pquip-hybrid-signature-spectrums] and the use of labels as + defined in [Bindel2017] + + Composite signature generation starts with pre-hashing the message + that is concatenated with the Domain separator Section 7.1. After + that, the signature process for each component algorithm is invoked + and the values are then placed in the CompositeSignatureValue + structure defined in Section 6.1. + + A composite signature's value MUST include two signature components + and MUST be in the same order as the components from the + corresponding signing key. + + The following process is used to generate composite signature values. + +Sign (sk, Message) -> (signature) +Input: + K1, K2 Signing private keys for each component. See note below on + composite inputs. + + A1, A2 Component signature algorithms. See note below on + composite inputs. + + Message The Message to be signed, an octet string + + HASH The Message Digest Algorithm used for pre-hashing. See section + on pre-hashing below. + + Domain Domain separator value for binding the signature to the Composite OID. + See section on Domain Separators below. + +Output: + signature The composite signature, a CompositeSignatureValue + +Signature Generation Process: + + 1. Compute the new Message M' by concatenating the Domain identifier (i.e., the DER encoding of the Composite signature algorithm identifier) with the Hash of the Message + + M' := Domain || HASH(Message) + + 2. Generate the 2 component signatures independently, by calculating the signature over M' + according to their algorithm specifications that might involve the use of the hash-n-sign paradigm. + + S1 := Sign( K1, A1, M' ) + S2 := Sign( K2, A2, M' ) + + 3. Encode each component signature S1 and S2 into a BIT STRING + according to its algorithm specification. + + signature := NULL + + IF (S1 != NULL) and (S2 != NULL): + signature := Sequence { S1, S2 } + + 4. Output signature + + return signature + + Figure 2: Composite Sign(sk, Message) + + It is possible to construct CompositePrivateKey(s) to generate + signatures from component keys stored in separate software or + hardware keystores. Variations in the process to accommodate + particular private key storage mechanisms are considered to be + conformant to this document so long as it produces the same output as + the process sketched above. + +4.3. Signature Verify + + Verification of a composite signature involves reconstructing the M' + message first by concatenating the Domain separator (i.e., the DER + encoding of the used Composite scheme's OID) with the Hash of the + original message and then applying each component algorithm's + verification process to the new message M'. + + Compliant applications MUST output "Valid signature" (true) if and + only if all component signatures were successfully validated, and + "Invalid signature" (false) otherwise. + + The following process is used to perform this verification. + +Composite Verify(pk, Message, signature) +Input: + P1, P2 Public verification keys. See note below on + composite inputs. + + Message Message whose signature is to be verified, + an octet string. + + signature CompositeSignatureValue containing the component + signature values (S1 and S2) to be verified. + + A1, A2 Component signature algorithms. See note + below on composite inputs. + + HASH The Message Digest Algorithm for pre-hashing. See + section on pre-hashing the message below. + + Domain Domain separator value for binding the signature to the Composite OID. + See section on Domain Separators below. + +Output: + Validity (bool) "Valid signature" (true) if the composite + signature is valid, "Invalid signature" + (false) otherwise. + +Signature Verification Procedure:: + 1. Check keys, signatures, and algorithms lists for consistency. + + If Error during Desequencing, or the sequences have + different numbers of elements, or any of the public keys + P1 or P2 and the algorithm identifiers A1 or A2 are + composite then output "Invalid signature" and stop. + + 2. Compute a Hash of the Message + + M' = Domain || HASH(Message) + + 3. Check each component signature individually, according to its + algorithm specification. + If any fail, then the entire signature validation fails. + + if not verify( P1, M', S1, A1 ) then + output "Invalid signature" + if not verify( P2, M', S2, A2 ) then + output "Invalid signature" + + if all succeeded, then + output "Valid signature" + + Figure 3: Composite Verify(pk, Message, signature) + + It is possible to construct CompositePublicKey(s) to verify + signatures from component keys stored in separate software or + hardware keystores. Variations in the process to accommodate + particular private key storage mechanisms are considered to be + conformant to this document so long as it produces the same output as + the process sketched above. + +5. Composite Key Structures + + In order for signatures to be composed of multiple algorithms, we + define encodings consisting of a sequence of signature primitives + (aka "component algorithms") such that these structures can be used + as a drop-in replacement for existing signature fields such as those + found in PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS + [RFC5652]. + +5.1. pk-CompositeSignature + + The following ASN.1 structures represent a composite public key + combined with an RSA and Elliptic Curve public key, respectively. + + RsaCompositeSignaturePublicKey ::= SEQUENCE { + firstPublicKey BIT STRING (ENCODED BY id-raw-key), + secondPublicKey BIT STRING (CONTAINING RSAPublicKey) + } + + EcCompositeSignaturePublicKey ::= SEQUENCE { + firstPublicKey BIT STRING (ENCODED BY id-raw-key), + secondPublicKey BIT STRING (CONTAINING ECPoint) + } + + EdCompositeSignaturePublicKey ::= SEQUENCE { + firstPublicKey BIT STRING (ENCODED BY id-raw-key), + secondPublicKey BIT STRING (CONTAINING id-raw-key) + } + + id-raw-key is defined by this document. + + This structure is intentionally generic in the first public key slot + since ML-DSA, as defined in [I-D.ietf-lamps-dilithium-certificates], + does not define any ASN.1 public key structures. For use with this + document, the firstPublicKey MUST be the BIT STRING representation of + an ML-DSA key as specified in + [I-D.ietf-lamps-dilithium-certificates]. Note that here we used BIT + STRING rather than OCTET STRING so that these keys can be trivially + transcoded into a SubjectPublicKeyInfo as necessary, for example when + a crypto library requires this for invoking the component algorithm. + The public key for Edwards curve DSA component is also encoded as a + raw key. + + The following ASN.1 Information Object Class is defined to then allow + for compact definitions of each composite algorithm. + + pk-CompositeSignature {OBJECT IDENTIFIER:id, PublicKeyType} + PUBLIC-KEY ::= { + IDENTIFIER id + KEY PublicKeyType + PARAMS ARE absent + CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign} + } + + As an example, the public key type pk-MLDSA44-ECDSA-P256-SHA256 is + defined as: + + pk-MLDSA44-ECDSA-P256-SHA256 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA44-ECDSA-P256-SHA256, + EcCompositeSignaturePublicKey} + + The full set of key types defined by this specification can be found + in the ASN.1 Module in Section 9. + +5.2. CompositeSignaturePublicKey + + Composite public key data is represented by the following structure: + + CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING + + A composite key MUST contain two component public keys. The order of + the component keys is determined by the definition of the + corresponding algorithm identifier as defined in section Section 7. + + Some applications may need to reconstruct the SubjectPublicKeyInfo + objects corresponding to each component public key. Table 2 in + Section 7 provides the necessary mapping between composite and their + component algorithms for doing this reconstruction. This also + motivates the design choice of SEQUENCE OF BIT STRING instead of + SEQUENCE OF OCTET STRING; using BIT STRING allows for easier + transcription between CompositeSignaturePublicKey and + SubjectPublicKeyInfo. + + When the CompositeSignaturePublicKey must be provided in octet string + or bit string format, the data structure is encoded as specified in + Section 5.4. + + Component keys of a CompositeSignaturePublicKey MUST NOT be used in + any other type of key or as a standalone key. + +5.3. CompositeSignaturePrivateKey + + Use cases that require an interoperable encoding for composite + private keys, such as when private keys are carried in PKCS #12 + [RFC7292], CMP [RFC4210] or CRMF [RFC4211] MUST use the following + structure. + + CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey + + Each element is a OneAsymmetricKey` [RFC5958] object for a component + private key. + + The parameters field MUST be absent. + + The order of the component keys is the same as the order defined in + Section 5.2 for the components of CompositeSignaturePublicKey. + + When a CompositeSignaturePrivateKey is conveyed inside a + OneAsymmetricKey structure (version 1 of which is also known as + PrivateKeyInfo) [RFC5958], the privateKeyAlgorithm field SHALL be set + to the corresponding composite algorithm identifier defined according + to Section 7, the privateKey field SHALL contain the + CompositeSignaturePrivateKey, and the publicKey field MUST NOT be + present. Associated public key material MAY be present in the + CompositeSignaturePrivateKey. + + In some usecases the private keys that comprise a composite key may + not be represented in a single structure or even be contained in a + single cryptographic module; for example if one component is within + the FIPS boundary of a cryptographic module and the other is not; see + {sec-fips} for more discussion. The establishment of correspondence + between public keys in a CompositeSignaturePublicKey and private keys + not represented in a single composite structure is beyond the scope + of this document. + + Component keys of a CompositeSignaturePrivateKey MUST NOT be used in + any other type of key or as a standalone key. + +5.4. Encoding Rules + + Many protocol specifications will require that the composite public + key and composite private key data structures be represented by an + octet string or bit string. + + When an octet string is required, the DER encoding of the composite + data structure SHALL be used directly. + + CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING + CompositeSignaturePublicKey ENCODED BY der) + + When a bit string is required, the octets of the DER encoded + composite data structure SHALL be used as the bits of the bit string, + with the most significant bit of the first octet becoming the first + bit, and so on, ending with the least significant bit of the last + octet becoming the last bit of the bit string. + + CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING + CompositeSignaturePublicKey ENCODED BY der) + + In the interests of simplicity and avoiding compatibility issues, + implementations that parse these structures MAY accept both BER and + DER. + +5.5. Key Usage Bits + + For protocols such as X.509 [RFC5280] that specify key usage along + with the public key, then the composite public key associated with a + composite signature MUST have a signing-type key usage. This is + because the composite public key can only be used in situations that + are appropriate for both component algorithms, so even if the + classical component key supports both signing and encryption, the + post-quantum algorithms do not. + + If the keyUsage extension is present in a Certification Authority + (CA) certificate that indicates a composite key, then any combination + of the following values MAY be present and any other values MUST NOT + be present: + + digitalSignature; + nonRepudiation; + keyCertSign; and + cRLSign. + + If the keyUsage extension is present in an End Entity (EE) + certificate that indicates a composite key, then any combination of + the following values MAY be present and any other values MUST NOT be + present: + + digitalSignature; and + nonRepudiation; + +6. Composite Signature Structures + +6.1. sa-CompositeSignature + + The ASN.1 algorithm object for a composite signature is: + + sa-CompositeSignature{OBJECT IDENTIFIER:id, + PUBLIC-KEY:publicKeyType } + SIGNATURE-ALGORITHM ::= { + IDENTIFIER id + VALUE CompositeSignatureValue + PARAMS ARE absent + PUBLIC-KEYS {publicKeyType} + } + + The following is an explanation how SIGNATURE-ALGORITHM elements are + used to create Composite Signatures: + + +=============================+===================================+ + | SIGNATURE-ALGORITHM element | Definition | + +=============================+===================================+ + | IDENTIFIER | The Object ID used to identify | + | | the composite Signature Algorithm | + +-----------------------------+-----------------------------------+ + | VALUE | The Sequence of BIT STRINGS for | + | | each component signature value | + +-----------------------------+-----------------------------------+ + | PARAMS | Parameters are absent | + +-----------------------------+-----------------------------------+ + | PUBLIC-KEYS | The composite key required to | + | | produce the composite signature | + +-----------------------------+-----------------------------------+ + + Table 1 + +6.2. CompositeSignatureValue + + The output of the composite signature algorithm is the DER encoding + of the following structure: + + CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING + + Where each BIT STRING within the SEQUENCE is a signature value + produced by one of the component keys. It MUST contain one signature + value produced by each component algorithm, and in the same order as + specified in the object identifier. + + The choice of SEQUENCE SIZE (2) OF BIT STRING, rather than for + example a single BIT STRING containing the concatenated signature + values, is to gracefully handle variable-length signature values by + taking advantage of ASN.1's built-in length fields. + +7. Algorithm Identifiers + + This section defines the algorithm identifiers for explicit + combinations. For simplicity and prototyping purposes, the signature + algorithm object identifiers specified in this document are the same + as the composite key object Identifiers. A proper implementation + should not presume that the object ID of a composite key will be the + same as its composite signature algorithm. + + This section is not intended to be exhaustive and other authors may + define other composite signature algorithms so long as they are + compatible with the structures and processes defined in this and + companion public and private key documents. + + Some use-cases desire the flexibility for clients to use any + combination of supported algorithms, while others desire the rigidity + of explicitly-specified combinations of algorithms. + + The following table summarizes the details for each explicit + composite signature algorithms: + + The OID referenced are TBD for prototyping only, and the following + prefix is used for each: + + replace with the String "2.16.840.1.114027.80.8.1" + + Therefore .21 is equal to 2.16.840.1.114027.80.8.1.21 + + Signature public key types: + + +=============================+============+===========+=======================+======+ + |Composite Signature |OID |First |Second AlgorithmID |Pre- | + |AlgorithmID | |AlgorithmID| |Hash | + +=============================+============+===========+=======================+======+ + |id-MLDSA44-RSA2048-PSS-SHA256|.21|id-ML- |id-RSASA-PSS with id- |id- | + | | |DSA-44 |sha256 |sha256| + +-----------------------------+------------+-----------+-----------------------+------+ + |id- |.22|id-ML- |sha256WithRSAEncryption|id- | + |MLDSA44-RSA2048-PKCS15-SHA256| |DSA-44 | |sha256| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA44-Ed25519-SHA512 |.23|id-ML- |id-Ed25519 |id- | + | | |DSA-44 | |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA44-ECDSA-P256-SHA256 |.24|id-ML- |ecdsa-with-SHA256 with |id- | + | | |DSA-44 |secp256r1 |sha256| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA44-ECDSA- |.25|id-ML- |ecdsa-with-SHA256 with |id- | + |brainpoolP256r1-SHA256 | |DSA-44 |brainpoolP256r1 |sha256| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA65-RSA3072-PSS-SHA512|.26|id-ML- |id-RSASA-PSS with id- |id- | + | | |DSA-65 |sha512 |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id- |.27|id-ML- |sha512WithRSAEncryption|id- | + |MLDSA65-RSA3072-PKCS15-SHA512| |DSA-65 | |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA65-RSA4096-PSS-SHA512|.34|id-ML- |id-RSASA-PSS with id- |id- | + | | |DSA-65 |sha512 |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id- |.35|id-ML- |sha512WithRSAEncryption|id- | + |MLDSA65-RSA4096-PKCS15-SHA512| |DSA-65 | |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA65-ECDSA-P256-SHA512 |.28|id-ML- |ecdsa-with-SHA512 with |id- | + | | |DSA-65 |secp256r1 |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA65-ECDSA- |.29|id-ML- |ecdsa-with-SHA512 with |id- | + |brainpoolP256r1-SHA512 | |DSA-65 |brainpoolP256r1 |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA65-Ed25519-SHA512 |.30|id-ML- |id-Ed25519 |id- | + | | |DSA-65 | |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA87-ECDSA-P384-SHA512 |.31|id-ML- |ecdsa-with-SHA512 with |id- | + | | |DSA-87 |secp384r1 |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA87-ECDSA- |.32|id-ML- |ecdsa-with-SHA512 with |id- | + |brainpoolP384r1-SHA512 | |DSA-87 |brainpoolP384r1 |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + |id-MLDSA87-Ed448-SHA512 |.33|id-ML- |id-Ed448 |id- | + | | |DSA-87 | |sha512| + +-----------------------------+------------+-----------+-----------------------+------+ + + Table 2: Composite Signature Algorithms + + The table above contains everything needed to implement the listed + explicit composite algorithms. See the ASN.1 module in section + Section 9 for the explicit definitions of the above Composite + signature algorithms. + + Full specifications for the referenced algorithms can be found in + Appendix A. + +7.1. Domain Separators + + As mentioned above, the OID input value is used as a domain separator + for the Composite Signature Generation and verification process and + is the DER encoding of the OID. The following table shows the HEX + encoding for each Signature AlgorithmID. + + +=======================================+==========================+ + |Composite Signature AlgorithmID |Domain Separator (in Hex | + | |encoding) | + +=======================================+==========================+ + |id-MLDSA44-RSA2048-PSS-SHA256 |060B6086480186FA6B50080115| + +---------------------------------------+--------------------------+ + |id-MLDSA44-RSA2048-PKCS15-SHA256 |060B6086480186FA6B50080116| + +---------------------------------------+--------------------------+ + |id-MLDSA44-Ed25519-SHA512 |060B6086480186FA6B50080117| + +---------------------------------------+--------------------------+ + |id-MLDSA44-ECDSA-P256-SHA256 |060B6086480186FA6B50080118| + +---------------------------------------+--------------------------+ + |id-MLDSA44-ECDSA-brainpoolP256r1-SHA256|060B6086480186FA6B50080119| + +---------------------------------------+--------------------------+ + |id-MLDSA65-RSA3072-PSS-SHA512 |060B6086480186FA6B5008011A| + +---------------------------------------+--------------------------+ + |id-MLDSA65-RSA3072-PKCS15-SHA512 |060B6086480186FA6B5008011B| + +---------------------------------------+--------------------------+ + |id-MLDSA65-RSA4096-PSS-SHA512 |060B6086480186FA6B50080122| + +---------------------------------------+--------------------------+ + |id-MLDSA65-RSA4096-PKCS15-SHA512 |060B6086480186FA6B50080123| + +---------------------------------------+--------------------------+ + |id-MLDSA65-ECDSA-P256-SHA512 |060B6086480186FA6B5008011C| + +---------------------------------------+--------------------------+ + |id-MLDSA65-ECDSA-brainpoolP256r1-SHA512|060B6086480186FA6B5008011D| + +---------------------------------------+--------------------------+ + |id-MLDSA65-Ed25519-SHA512 |060B6086480186FA6B5008011E| + +---------------------------------------+--------------------------+ + |id-MLDSA87-ECDSA-P384-SHA512 |060B6086480186FA6B5008011F| + +---------------------------------------+--------------------------+ + |id-MLDSA87-ECDSA-brainpoolP384r1-SHA512|060B6086480186FA6B50080120| + +---------------------------------------+--------------------------+ + |id-MLDSA87-Ed448-SHA512 |060B6086480186FA6B50080121| + +---------------------------------------+--------------------------+ + + Table 3: Composite Signature Domain Separators + +7.2. Notes on id-MLDSA44-RSA2048-PSS-SHA256 + + Use of RSA-PSS [RFC8017] deserves a special explanation. + + The RSA component keys MUST be generated at the 2048-bit security + level in order to match with ML-DSA-44 + + As with the other composite signature algorithms, when id- + MLDSA44-RSA2048-PSS-SHA256 is used in an AlgorithmIdentifier, the + parameters MUST be absent. id-MLDSA44-RSA2048-PSS-SHA256 SHALL + instantiate RSA-PSS with the following parameters: + + +==========================+=========+ + | RSA-PSS Parameter | Value | + +==========================+=========+ + | Mask Generation Function | mgf1 | + +--------------------------+---------+ + | Mask Generation params | SHA-256 | + +--------------------------+---------+ + | Message Digest Algorithm | SHA-256 | + +--------------------------+---------+ + | Salt Length in bits | 256 | + +--------------------------+---------+ + + Table 4: RSA-PSS 2048 Parameters + + where: + + * Mask Generation Function (mgf1) is defined in [RFC8017] + + * SHA-256 is defined in [RFC6234]. + +7.3. Notes on id-MLDSA65-RSA3072-PSS-SHA512 + + The RSA component keys MUST be generated at the 3072-bit security + level in order to match with ML-DSA-65. + + As with the other composite signature algorithms, when id- + MLDSA65-RSA3072-PSS-SHA512 is used in an AlgorithmIdentifier, the + parameters MUST be absent. id-MLDSA65-RSA3072-PSS-SHA512 SHALL + instantiate RSA-PSS with the following parameters: + + +==========================+=========+ + | RSA-PSS Parameter | Value | + +==========================+=========+ + | Mask Generation Function | mgf1 | + +--------------------------+---------+ + | Mask Generation params | SHA-512 | + +--------------------------+---------+ + | Message Digest Algorithm | SHA-512 | + +--------------------------+---------+ + | Salt Length in bits | 512 | + +--------------------------+---------+ + + Table 5: RSA-PSS 3072 Parameters + + where: + + * Mask Generation Function (mgf1) is defined in [RFC8017] + + * SHA-512 is defined in [RFC6234]. + +7.4. Notes on id-MLDSA65-RSA4096-PSS-SHA512 + + The RSA component keys MUST be generated at the 4096-bit security + level in order to match with ML-DSA-65. + + As with the other composite signature algorithms, when id- + MLDSA65-RSA4096-PSS-SHA512 is used in an AlgorithmIdentifier, the + parameters MUST be absent. id-MLDSA65-RSA4096-PSS-SHA512 SHALL + instantiate RSA-PSS with the following parameters: + + +==========================+=========+ + | RSA-PSS Parameter | Value | + +==========================+=========+ + | Mask Generation Function | mgf1 | + +--------------------------+---------+ + | Mask Generation params | SHA-512 | + +--------------------------+---------+ + | Message Digest Algorithm | SHA-512 | + +--------------------------+---------+ + | Salt Length in bits | 512 | + +--------------------------+---------+ + + Table 6: RSA-PSS 4096 Parameters + + where: + + * Mask Generation Function (mgf1) is defined in [RFC8017] + + * SHA-512 is defined in [RFC6234]. + +8. Use in CMS + + [EDNOTE: The convention in LAMPS is to specify algorithms and their + CMS conventions in separate documents. Here we have presented them + in the same document, but this section has been written so that it + can easily be moved to a standalone document.] + + Composite Signature algorithms MAY be employed for one or more + recipients in the CMS signed-data content type [RFC5652]. + +8.1. Underlying Components + + When a particular Composite Signature OID is supported in CMS, an + implementation SHOULD support the corresponding Secure Hash algorithm + identifier in Table 7 that was used as the pre-hash. + + The following table lists the MANDATORY HASH algorithms to preserve + security and performance characteristics of each composite algorithm. + + +=========================================+=============+ + | Composite Signature AlgorithmID | Secure Hash | + +=========================================+=============+ + | id-MLDSA44-RSA2048-PSS-SHA256 | SHA256 | + +-----------------------------------------+-------------+ + | id-MLDSA44-RSA2048-PKCS15-SHA256 | SHA256 | + +-----------------------------------------+-------------+ + | id-MLDSA44-Ed25519-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA44-ECDSA-P256-SHA256 | SHA256 | + +-----------------------------------------+-------------+ + | id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 | SHA256 | + +-----------------------------------------+-------------+ + | id-MLDSA65-RSA3072-PSS-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA65-RSA3072-PKCS15-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA65-RSA4096-PSS-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA65-RSA4096-PKCS15-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA65-ECDSA-P256-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA65-Ed25519-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA87-ECDSA-P384-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + | id-MLDSA87-Ed448-SHA512 | SHA512 | + +-----------------------------------------+-------------+ + + Table 7: Composite Signature SHA Algorithms + + where: + + * SHA2 instantiations are defined in [FIPS180]. + +8.2. SignedData Conventions + + As specified in CMS [RFC5652], the digital signature is produced from + the message digest and the signer's private key. The signature is + computed over different values depending on whether signed attributes + are absent or present. + + When signed attributes are absent, the composite signature is + computed over the content. When signed attributes are present, a + hash is computed over the content using the same hash function that + is used in the composite pre-hash, and then a message-digest + attribute is constructed to contain the resulting hash value, and + then the result of DER encoding the set of signed attributes, which + MUST include a content-type attribute and a message-digest attribute, + and then the composite signature is computed over the DER-encoded + output. In summary: + + IF (signed attributes are absent) + THEN Composite_Sign(content) + ELSE message-digest attribute = Hash(content); + Composite_Sign(DER(SignedAttributes)) + + When using Composite Signatures, the fields in the SignerInfo are + used as follows: + + digestAlgorithm: The digestAlgorithm contains the one-way hash + function used by the CMS signer. + + signatureAlgorithm: The signatureAlgorithm MUST contain one of the + the Composite Signature algorithm identifiers as specified in Table 7 + + signature: The signature field contains the signature value resulting + from the composite signing operation of the specified + signatureAlgorithm. + +8.3. Certificate Conventions + + The conventions specified in this section augment RFC 5280 [RFC5280]. + + The willingness to accept a composite Signature Algorithm MAY be + signaled by the use of the SMIMECapabilities Attribute as specified + in Section 2.5.2. of [RFC8551] or the SMIMECapabilities certificate + extension as specified in [RFC4262]. + + The intended application for the public key MAY be indicated in the + key usage certificate extension as specified in Section 4.2.1.3 of + [RFC5280]. If the keyUsage extension is present in a certificate + that conveys a composite Signature public key, then the key usage + extension MUST contain only the following value: + + digitalSignature + nonRepudiation + keyCertSign + cRLSign + + The keyEncipherment and dataEncipherment values MUST NOT be present. + That is, a public key intended to be employed only with a composite + signature algorithm MUST NOT also be employed for data encryption. + This requirement does not carry any particular security + consideration; only the convention that signature keys be identified + with 'digitalSignature','nonRepudiation','keyCertSign' or 'cRLSign' + key usages. + +8.4. SMIMECapabilities Attribute Conventions + + Section 2.5.2 of [RFC8551] defines the SMIMECapabilities attribute to + announce a partial list of algorithms that an S/MIME implementation + can support. When constructing a CMS signed-data content type + [RFC5652], a compliant implementation MAY include the + SMIMECapabilities attribute that announces support for the RSA-KEM + Algorithm. + + The SMIMECapability SEQUENCE representing a composite signature + Algorithm MUST include the appropriate object identifier as per + Table 7 in the capabilityID field. + +9. ASN.1 Module + + + + Composite-MLDSA-2024 + { iso(1) identified-organization(3) dod(6) internet(1) + security(5) mechanisms(5) pkix(7) id-mod(0) + id-mod-composite-mldsa(TBDMOD) } + + + DEFINITIONS IMPLICIT TAGS ::= BEGIN + + EXPORTS ALL; + + IMPORTS + PUBLIC-KEY, SIGNATURE-ALGORITHM, AlgorithmIdentifier{} + FROM AlgorithmInformation-2009 -- RFC 5912 [X509ASN1] + { iso(1) identified-organization(3) dod(6) internet(1) + security(5) mechanisms(5) pkix(7) id-mod(0) + id-mod-algorithmInformation-02(58) } + + SubjectPublicKeyInfo + FROM PKIX1Explicit-2009 + { iso(1) identified-organization(3) dod(6) internet(1) + security(5) mechanisms(5) pkix(7) id-mod(0) + id-mod-pkix1-explicit-02(51) } + + OneAsymmetricKey + FROM AsymmetricKeyPackageModuleV1 + { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) + pkcs-9(9) smime(16) modules(0) + id-mod-asymmetricKeyPkgV1(50) } + + RSAPublicKey, ECPoint + FROM PKIXAlgs-2009 + { iso(1) identified-organization(3) dod(6) + internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) + id-mod-pkix1-algorithms2008-02(56) } + + sa-rsaSSA-PSS + FROM PKIX1-PSS-OAEP-Algorithms-2009 + {iso(1) identified-organization(3) dod(6) internet(1) security(5) + mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-rsa-pkalgs-02(54)} + + ; + + -- + -- Object Identifiers + -- + + -- Defined in ITU-T X.690 + der OBJECT IDENTIFIER ::= + {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)} + + + -- Just for testing, to be assigned by IANA + id-raw-key OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) raw(999) 1 } + + + -- + -- Signature Algorithm + -- + + + -- + -- Composite Signature basic structures + -- + + CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING + + CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING + CompositeSignaturePublicKey ENCODED BY der) + + CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING + CompositeSignaturePublicKey ENCODED BY der) + + CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey + + CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING + + RsaCompositeSignaturePublicKey ::= SEQUENCE { + firstPublicKey BIT STRING (ENCODED BY id-raw-key), + secondPublicKey BIT STRING (CONTAINING RSAPublicKey) + } + + EcCompositeSignaturePublicKey ::= SEQUENCE { + firstPublicKey BIT STRING (ENCODED BY id-raw-key), + secondPublicKey BIT STRING (CONTAINING ECPoint) + } + + EdCompositeSignaturePublicKey ::= SEQUENCE { + firstPublicKey BIT STRING (ENCODED BY id-raw-key), + secondPublicKey BIT STRING (ENCODED BY id-raw-key) + } + + -- Composite Signature Value is just a sequence of OCTET STRINGS + + -- CompositeSignaturePair{FirstSignatureValue, SecondSignatureValue} ::= + -- SEQUENCE { + -- signaturevalue1 FirstSignatureValue, + -- signaturevalue2 SecondSignatureValue } + + -- An Explicit Compsite Signature is a set of Signatures which + -- are composed of OCTET STRINGS + -- ExplicitCompositeSignatureValue ::= CompositeSignaturePair { + -- OCTET STRING,OCTET STRING} + + + -- + -- Information Object Classes + -- + + pk-CompositeSignature {OBJECT IDENTIFIER:id, PublicKeyType} + PUBLIC-KEY ::= { + IDENTIFIER id + KEY PublicKeyType + PARAMS ARE absent + CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign} + } + + sa-CompositeSignature{OBJECT IDENTIFIER:id, + PUBLIC-KEY:publicKeyType } + SIGNATURE-ALGORITHM ::= { + IDENTIFIER id + VALUE CompositeSignatureValue + PARAMS ARE absent + PUBLIC-KEYS {publicKeyType} + } + + -- TODO: OID to be replaced by IANA + id-MLDSA44-RSA2048-PSS-SHA256 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 21 } + + pk-MLDSA44-RSA2048-PSS-SHA256 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA44-RSA2048-PSS-SHA256, + RsaCompositeSignaturePublicKey} + + sa-MLDSA44-RSA2048-PSS-SHA256 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA44-RSA2048-PSS-SHA256, + pk-MLDSA44-RSA2048-PSS-SHA256 } + + -- TODO: OID to be replaced by IANA + id-MLDSA44-RSA2048-PKCS15-SHA256 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 22 } + + pk-MLDSA44-RSA2048-PKCS15-SHA256 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA44-RSA2048-PKCS15-SHA256, + RsaCompositeSignaturePublicKey} + + sa-MLDSA44-RSA2048-PKCS15-SHA256 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA44-RSA2048-PKCS15-SHA256, + pk-MLDSA44-RSA2048-PKCS15-SHA256 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA44-Ed25519-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 23 } + + pk-MLDSA44-Ed25519-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA44-Ed25519-SHA512, + EdCompositeSignaturePublicKey} + + sa-MLDSA44-Ed25519-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA44-Ed25519-SHA512, + pk-MLDSA44-Ed25519-SHA512 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA44-ECDSA-P256-SHA256 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 24 } + + pk-MLDSA44-ECDSA-P256-SHA256 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA44-ECDSA-P256-SHA256, + EcCompositeSignaturePublicKey} + + sa-MLDSA44-ECDSA-P256-SHA256 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA44-ECDSA-P256-SHA256, + pk-MLDSA44-ECDSA-P256-SHA256 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 25 } + + pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA44-ECDSA-brainpoolP256r1-SHA256, + EcCompositeSignaturePublicKey} + + sa-MLDSA44-ECDSA-brainpoolP256r1-SHA256 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA44-ECDSA-brainpoolP256r1-SHA256, + pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA65-RSA3072-PSS-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 26 } + + pk-MLDSA65-RSA3072-PSS-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA65-RSA3072-PSS-SHA512, + RsaCompositeSignaturePublicKey} + + sa-MLDSA65-RSA3072-PSS-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA65-RSA3072-PSS-SHA512, + pk-MLDSA65-RSA3072-PSS-SHA512 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA65-RSA3072-PKCS15-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 27 } + + pk-MLDSA65-RSA3072-PKCS15-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA65-RSA3072-PKCS15-SHA512, + RsaCompositeSignaturePublicKey} + + sa-MLDSA65-RSA3072-PKCS15-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA65-RSA3072-PKCS15-SHA512, + pk-MLDSA65-RSA3072-PKCS15-SHA512 } + + -- TODO: OID to be replaced by IANA + id-MLDSA65-RSA4096-PSS-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 34 } + + pk-MLDSA65-RSA4096-PSS-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA65-RSA4096-PSS-SHA512, + RsaCompositeSignaturePublicKey} + + sa-MLDSA65-RSA4096-PSS-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA65-RSA4096-PSS-SHA512, + pk-MLDSA65-RSA4096-PSS-SHA512 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA65-RSA4096-PKCS15-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 35 } + + pk-MLDSA65-RSA4096-PKCS15-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA65-RSA4096-PKCS15-SHA512, + RsaCompositeSignaturePublicKey} + + sa-MLDSA65-RSA4096-PKCS15-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA65-RSA4096-PKCS15-SHA512, + pk-MLDSA65-RSA4096-PKCS15-SHA512 } + + -- TODO: OID to be replaced by IANA + id-MLDSA65-ECDSA-P256-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 28 } + + pk-MLDSA65-ECDSA-P256-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA512, + EcCompositeSignaturePublicKey} + + sa-MLDSA65-ECDSA-P256-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA65-ECDSA-P256-SHA512, + pk-MLDSA65-ECDSA-P256-SHA512 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 29 } + + pk-MLDSA65-ECDSA-brainpoolP256r1-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA65-ECDSA-brainpoolP256r1-SHA512, + EcCompositeSignaturePublicKey} + + sa-MLDSA65-ECDSA-brainpoolP256r1-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA65-ECDSA-brainpoolP256r1-SHA512, + pk-MLDSA65-ECDSA-brainpoolP256r1-SHA512 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA65-Ed25519-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 30 } + + pk-MLDSA65-Ed25519-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA65-Ed25519-SHA512, + EdCompositeSignaturePublicKey} + + sa-MLDSA65-Ed25519-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA65-Ed25519-SHA512, + pk-MLDSA65-Ed25519-SHA512 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA87-ECDSA-P384-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 31 } + + pk-MLDSA87-ECDSA-P384-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA87-ECDSA-P384-SHA512, + EcCompositeSignaturePublicKey} + + sa-MLDSA87-ECDSA-P384-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA87-ECDSA-P384-SHA512, + pk-MLDSA87-ECDSA-P384-SHA512 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 32 } + + pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA87-ECDSA-brainpoolP384r1-SHA512, + EcCompositeSignaturePublicKey} + + sa-MLDSA87-ECDSA-brainpoolP384r1-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA87-ECDSA-brainpoolP384r1-SHA512, + pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 } + + + -- TODO: OID to be replaced by IANA + id-MLDSA87-Ed448-SHA512 OBJECT IDENTIFIER ::= { + joint-iso-itu-t(2) country(16) us(840) organization(1) + entrust(114027) algorithm(80) composite(8) signature(1) 33 } + + pk-MLDSA87-Ed448-SHA512 PUBLIC-KEY ::= + pk-CompositeSignature{ id-MLDSA87-Ed448-SHA512, + EdCompositeSignaturePublicKey} + + sa-MLDSA87-Ed448-SHA512 SIGNATURE-ALGORITHM ::= + sa-CompositeSignature{ + id-MLDSA87-Ed448-SHA512, + pk-MLDSA87-Ed448-SHA512 } + + END + + + +10. IANA Considerations + + IANA is requested to allocate a value from the "SMI Security for PKIX + Module Identifier" registry [RFC7299] for the included ASN.1 module, + and allocate values from "SMI Security for PKIX Algorithms" to + identify the fourteen Algorithms defined within. + +10.1. Object Identifier Allocations + + EDNOTE to IANA: OIDs will need to be replaced in both the ASN.1 + module and in Table 2. + +10.1.1. Module Registration - SMI Security for PKIX Module Identifier + + * Decimal: IANA Assigned - *Replace TBDMOD* + + * Description: Composite-Signatures-2023 - id-mod-composite- + signatures + + * References: This Document + +10.1.2. Object Identifier Registrations - SMI Security for PKIX + Algorithms + + * id-raw-key + + * Decimal: IANA Assigned + + * Description: Designates a public key BIT STRING with no ASN.1 + structure. + + * References: This Document + + * id-MLDSA44-RSA2048-PSS-SHA256 + + * Decimal: IANA Assigned + + * Description: id-MLDSA44-RSA2048-PSS-SHA256 + + * References: This Document + + * id-MLDSA44-RSA2048-PKCS15-SHA256 + + * Decimal: IANA Assigned + + * Description: id-MLDSA44-RSA2048-PKCS15-SHA256 + + * References: This Document + + * id-MLDSA44-Ed25519-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA44-Ed25519-SHA512 + + * References: This Document + + * id-MLDSA44-ECDSA-P256-SHA256 + + * Decimal: IANA Assigned + + * Description: id-MLDSA44-ECDSA-P256-SHA256 + + * References: This Document + + * id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 + + * Decimal: IANA Assigned + + * Description: id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 + + * References: This Document + + * id-MLDSA65-RSA3072-PSS-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA65-RSA3072-PSS-SHA512 + + * References: This Document + + * id-MLDSA65-RSA3072-PKCS15-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA65-RSA3072-PKCS15-SHA512 + + * References: This Document + + * id-MLDSA65-RSA4096-PSS-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA65-RSA4096-PSS-SHA512 + + * References: This Document + + * id-MLDSA65-RSA4096-PKCS15-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA65-RSA4096-PKCS15-SHA512 + + * References: This Document + + * id-MLDSA65-ECDSA-P256-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA65-ECDSA-P256-SHA512 + + * References: This Document + + * id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 + + * References: This Document + + * id-MLDSA65-Ed25519-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA65-Ed25519-SHA512 + + * References: This Document + + * id-MLDSA87-ECDSA-P384-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA87-ECDSA-P384-SHA512 + + * References: This Document + + * id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 + + * References: This Document + + * id-MLDSA87-Ed448-SHA512 + + * Decimal: IANA Assigned + + * Description: id-MLDSA87-Ed448-SHA512 + + * References: This Document + +11. Security Considerations + +11.1. PreHashing Algorithm Selection Criteria + + As noted in the composite signature generation process and composite + signature verification process, the Message should be pre-hashed into + M' with the digest algorithm specified in the composite signature + algorithm identifier. The selection of the digest algorithm was + chosen with the following criteria: + + 1. For composites paired with RSA or ECDSA, the hashing algorithm + SHA256 or SHA512 is used as part of the RSA or ECDSA signature + algorithm and is therefore also used as the composite prehashing + algorithm. + + 2. For ML-DSA [FIPS.204-ipd] signing a digest of the message is + allowed as long as the hash function provides at least y bits of + classical security strength against both collision and second + preimage attacks. For ML-DSA-44 y is 128 bits, for ML-DSA-65 y + is 192 bits and for ML-DSA-87 y is 256 bits. Therefore SHA256 is + paired with RSA and ECDSA with ML-DSA-44 and SHA512 is paired + with RSA and ECDSA with ML-DSA-65 and ML-DSA-87 to match the + appropriate security strength. + + 3. Ed25519 [RFC8032] uses SHA512 internally, therefore SHA512 is + used to pre-hash the message when Ed25519 is a component + algorithm. + + 4. Ed448 [RFC8032] uses SHAKE256 internally, but to reduce the set + of prehashing algorihtms, SHA512 was selected to pre-hash the + message when Ed448 is a component algorithm. + +11.2. Policy for Deprecated and Acceptable Algorithms + + Traditionally, a public key, certificate, or signature contains a + single cryptographic algorithm. If and when an algorithm becomes + deprecated (for example, RSA-512, or SHA1), then clients performing + signatures or verifications should be updated to adhere to + appropriate policies. + + In the composite model this is less obvious since implementers may + decide that certain cryptographic algorithms have complementary + security properties and are acceptable in combination even though one + or both algorithms are deprecated for individual use. As such, a + single composite public key or certificate may contain a mixture of + deprecated and non-deprecated algorithms. + + Since composite algorithms are registered independently of their + component algorithms, their deprecation can be handled independently + from that of their component algorithms. For example a cryptographic + policy might continue to allow id-MLDSA65-ECDSA-P256-SHA512 even + after ECDSA-P256 is deprecated. + + When considering stripping attacks, one need consider the case where + an attacker has fully compromised one of the component algorithms to + the point that they can produce forged signatures that appear valid + under one of the component public keys, and thus fool a victim + verifier into accepting a forged signature. The protection against + this attack relies on the victim verifier trusting the pair of public + keys as a single composite key, and not trusting the individual + component keys by themselves. + + Specifically, in order to achieve this non-separability property, + this specification makes two assumptions about how the verifier will + establish trust in a composite public key: + + 1. This specification assumes that all of the component keys within + a composite key are freshly generated for the composite; ie a + given public key MUST NOT appear as a component within a + composite key and also within single-algorithm constructions. + + 2. This specification assumes that composite public keys will be + bound in a structure that contains a signature over the public + key (for example, an X.509 Certificate [RFC5280]), which is + chained back to a trust anchor, and where that signature + algorithm is at least as strong as the composite public key that + it is protecting. + + There are mechanisms within Internet PKI where trusted public keys do + not appear within signed structures -- such as the Trust Anchor + format defined in [RFC5914]. In such cases, it is the responsibility + of implementers to ensure that trusted composite keys are distributed + in a way that is tamper-resistant and does not allow the component + keys to be trusted independently. + +12. References + +12.1. Normative References + + [FIPS.204] National Institute of Standards and Technology (NIST), + "Module-Lattice-Based Digital Signature Standard", August + 2024, . + + [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, + DOI 10.17487/RFC2119, March 1997, + . + + [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification + Request Syntax Specification Version 1.7", RFC 2986, + DOI 10.17487/RFC2986, November 2000, + . + + [RFC4210] Adams, C., Farrell, S., Kause, T., and T. Mononen, + "Internet X.509 Public Key Infrastructure Certificate + Management Protocol (CMP)", RFC 4210, + DOI 10.17487/RFC4210, September 2005, + . + + [RFC4211] Schaad, J., "Internet X.509 Public Key Infrastructure + Certificate Request Message Format (CRMF)", RFC 4211, + DOI 10.17487/RFC4211, September 2005, + . + + [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., + Housley, R., and W. Polk, "Internet X.509 Public Key + Infrastructure Certificate and Certificate Revocation List + (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, + . + + [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk, + "Elliptic Curve Cryptography Subject Public Key + Information", RFC 5480, DOI 10.17487/RFC5480, March 2009, + . + + [RFC5639] Lochter, M. and J. Merkle, "Elliptic Curve Cryptography + (ECC) Brainpool Standard Curves and Curve Generation", + RFC 5639, DOI 10.17487/RFC5639, March 2010, + . + + [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, + RFC 5652, DOI 10.17487/RFC5652, September 2009, + . + + [RFC5758] Dang, Q., Santesson, S., Moriarty, K., Brown, D., and T. + Polk, "Internet X.509 Public Key Infrastructure: + Additional Algorithms and Identifiers for DSA and ECDSA", + RFC 5758, DOI 10.17487/RFC5758, January 2010, + . + + [RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958, + DOI 10.17487/RFC5958, August 2010, + . + + [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic + Curve Cryptography Algorithms", RFC 6090, + DOI 10.17487/RFC6090, February 2011, + . + + [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms + (SHA and SHA-based HMAC and HKDF)", RFC 6234, + DOI 10.17487/RFC6234, May 2011, + . + + [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves + for Security", RFC 7748, DOI 10.17487/RFC7748, January + 2016, . + + [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital + Signature Algorithm (EdDSA)", RFC 8032, + DOI 10.17487/RFC8032, January 2017, + . + + [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC + 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, + May 2017, . + + [RFC8410] Josefsson, S. and J. Schaad, "Algorithm Identifiers for + Ed25519, Ed448, X25519, and X448 for Use in the Internet + X.509 Public Key Infrastructure", RFC 8410, + DOI 10.17487/RFC8410, August 2018, + . + + [RFC8411] Schaad, J. and R. Andrews, "IANA Registration for the + Cryptographic Algorithm Object Identifier Range", + RFC 8411, DOI 10.17487/RFC8411, August 2018, + . + + [X.690] ITU-T, "Information technology - ASN.1 encoding Rules: + Specification of Basic Encoding Rules (BER), Canonical + Encoding Rules (CER) and Distinguished Encoding Rules + (DER)", ISO/IEC 8825-1:2015, November 2015. + +12.2. Informative References + + [ANSSI2024] + French Cybersecurity Agency (ANSSI), Federal Office for + Information Security (BSI), Netherlands National + Communications Security Agency (NLNCSA), and Swedish + National Communications Security Authority, Swedish Armed + Forces, "Position Paper on Quantum Key Distribution", + n.d., . + + [Bindel2017] + Bindel, N., Herath, U., McKague, M., and D. Stebila, + "Transitioning to a quantum-resistant public key + infrastructure", 2017, . + + [BSI2021] Federal Office for Information Security (BSI), "Quantum- + safe cryptography - fundamentals, current developments and + recommendations", October 2021, + . + + [I-D.becker-guthrie-noncomposite-hybrid-auth] + Becker, A., Guthrie, R., and M. J. Jenkins, "Non-Composite + Hybrid Authentication in PKIX and Applications to Internet + Protocols", Work in Progress, Internet-Draft, draft- + becker-guthrie-noncomposite-hybrid-auth-00, 22 March 2022, + . + + [I-D.driscoll-pqt-hybrid-terminology] + D, F., "Terminology for Post-Quantum Traditional Hybrid + Schemes", Work in Progress, Internet-Draft, draft- + driscoll-pqt-hybrid-terminology-01, 20 October 2022, + . + + [I-D.guthrie-ipsecme-ikev2-hybrid-auth] + Guthrie, R., "Hybrid Non-Composite Authentication in + IKEv2", Work in Progress, Internet-Draft, draft-guthrie- + ipsecme-ikev2-hybrid-auth-00, 25 March 2022, + . + + [I-D.hale-pquip-hybrid-signature-spectrums] + Bindel, N., Hale, B., Connolly, D., and F. D, "Hybrid + signature spectrums", Work in Progress, Internet-Draft, + draft-hale-pquip-hybrid-signature-spectrums-01, 6 November + 2023, . + + [I-D.ietf-lamps-dilithium-certificates] + Massimo, J., Kampanakis, P., Turner, S., and B. + Westerbaan, "Internet X.509 Public Key Infrastructure: + Algorithm Identifiers for ML-DSA", Work in Progress, + Internet-Draft, draft-ietf-lamps-dilithium-certificates- + 04, 22 July 2024, . + + [I-D.massimo-lamps-pq-sig-certificates] + Massimo, J., Kampanakis, P., Turner, S., and B. + Westerbaan, "Algorithms and Identifiers for Post-Quantum + Algorithms", Work in Progress, Internet-Draft, draft- + massimo-lamps-pq-sig-certificates-00, 8 July 2022, + . + + [I-D.ounsworth-pq-composite-kem] + Ounsworth, M. and J. Gray, "Composite KEM For Use In + Internet PKI", Work in Progress, Internet-Draft, draft- + ounsworth-pq-composite-kem-01, 13 March 2023, + . + + [I-D.pala-klaussner-composite-kofn] + Pala, M. and J. Klaußner, "K-threshold Composite + Signatures for the Internet PKI", Work in Progress, + Internet-Draft, draft-pala-klaussner-composite-kofn-00, 15 + November 2022, . + + [I-D.vaira-pquip-pqc-use-cases] + Vaira, A., Brockhaus, H., Railean, A., Gray, J., and M. + Ounsworth, "Post-quantum cryptography use cases", Work in + Progress, Internet-Draft, draft-vaira-pquip-pqc-use-cases- + 00, 23 October 2023, + . + + [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and + Identifiers for the Internet X.509 Public Key + Infrastructure Certificate and Certificate Revocation List + (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April + 2002, . + + [RFC7292] Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A., + and M. Scott, "PKCS #12: Personal Information Exchange + Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014, + . + + [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T. + Kivinen, "Internet Key Exchange Protocol Version 2 + (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October + 2014, . + + [RFC7299] Housley, R., "Object Identifier Registry for the PKIX + Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014, + . + + [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, + "PKCS #1: RSA Cryptography Specifications Version 2.2", + RFC 8017, DOI 10.17487/RFC8017, November 2016, + . + + [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol + Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, + . + + [RFC8551] Schaad, J., Ramsdell, B., and S. Turner, "Secure/ + Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 + Message Specification", RFC 8551, DOI 10.17487/RFC8551, + April 2019, . + +Appendix A. Component Algorithm Reference + + This section provides references to the full specification of the + algorithms used in the composite constructions. + + +=======================+========================+=======================================+ + |Component Signature |OID |Specification | + |Algorithm ID | | | + +=======================+========================+=======================================+ + |id-ML-DSA-44 |1.3.6.1.4.1.2.267.12.4.4|_ML-DSA_: | + | | |[I-D.ietf-lamps-dilithium-certificates]| + | | |and [FIPS.204-ipd] | + +-----------------------+------------------------+---------------------------------------+ + |id-ML-DSA-65 |1.3.6.1.4.1.2.267.12.6.5|_ML-DSA_: | + | | |[I-D.ietf-lamps-dilithium-certificates]| + | | |and [FIPS.204-ipd] | + +-----------------------+------------------------+---------------------------------------+ + |id-ML-DSA-87 |1.3.6.1.4.1.2.267.12.8.7|_ML-DSA_: | + | | |[I-D.ietf-lamps-dilithium-certificates]| + | | |and [FIPS.204-ipd] | + +-----------------------+------------------------+---------------------------------------+ + |id-Ed25519 |iso(1) identified- |_Ed25519 / Ed448_: [RFC8410] | + | |organization(3) | | + | |thawte(101) 112 | | + +-----------------------+------------------------+---------------------------------------+ + |id-Ed448 |iso(1) identified- |_Ed25519 / Ed448_: [RFC8410] | + | |organization(3) | | + | |thawte(101) id- | | + | |Ed448(113) | | + +-----------------------+------------------------+---------------------------------------+ + |ecdsa-with-SHA256 |iso(1) member-body(2) |_ECDSA_: [RFC5758] | + | |us(840) ansi- | | + | |X9-62(10045) | | + | |signatures(4) ecdsa- | | + | |with-SHA2(3) 2 | | + +-----------------------+------------------------+---------------------------------------+ + |ecdsa-with-SHA512 |iso(1) member-body(2) |_ECDSA_: [RFC5758] | + | |us(840) ansi- | | + | |X9-62(10045) | | + | |signatures(4) ecdsa- | | + | |with-SHA2(3) 4 | | + +-----------------------+------------------------+---------------------------------------+ + |sha256WithRSAEncryption|iso(1) member-body(2) |_RSAES-PKCS-v1_5_: [RFC8017] | + | |us(840) rsadsi(113549) | | + | |pkcs(1) pkcs-1(1) 11 | | + +-----------------------+------------------------+---------------------------------------+ + |sha512WithRSAEncryption|iso(1) member-body(2) |_RSAES-PKCS-v1_5_: [RFC8017] | + | |us(840) rsadsi(113549) | | + | |pkcs(1) pkcs-1(1) 13 | | + +-----------------------+------------------------+---------------------------------------+ + |id-RSASA-PSS |iso(1) member-body(2) |_RSASSA-PSS_: [RFC8017] | + | |us(840) rsadsi(113549) | | + | |pkcs(1) pkcs-1(1) 10 | | + +-----------------------+------------------------+---------------------------------------+ + + Table 8: Component Signature Algorithms used in Composite + Constructions + + +=================+=================================+===============+ + | Elliptic | OID | Specification | + | CurveID | | | + +=================+=================================+===============+ + | secp256r1 | iso(1) member-body(2) | [RFC6090] | + | | us(840) ansi-x962(10045) | | + | | curves(3) prime(1) 7 | | + +-----------------+---------------------------------+---------------+ + | secp384r1 | iso(1) identified- | [RFC6090] | + | | organization(3) | | + | | certicom(132) curve(0) 34 | | + +-----------------+---------------------------------+---------------+ + | brainpoolP256r1 | iso(1) identified- | [RFC5639] | + | | organization(3) | | + | | teletrust(36) algorithm(3) | | + | | signatureAlgorithm(3) | | + | | ecSign(2) | | + | | ecStdCurvesAndGeneration(8) | | + | | ellipticCurve(1) | | + | | versionOne(1) 7 | | + +-----------------+---------------------------------+---------------+ + | brainpoolP384r1 | iso(1) identified- | [RFC5639] | + | | organization(3) | | + | | teletrust(36) algorithm(3) | | + | | signatureAlgorithm(3) | | + | | ecSign(2) | | + | | ecStdCurvesAndGeneration(8) | | + | | ellipticCurve(1) | | + | | versionOne(1) 11 | | + +-----------------+---------------------------------+---------------+ + + Table 9: Elliptic Curves used in Composite Constructions + + +===========+=================================+===============+ + | HashID | OID | Specification | + +===========+=================================+===============+ + | id-sha256 | joint-iso-itu-t(2) country(16) | [RFC6234] | + | | us(840) organization(1) | | + | | gov(101) csor(3) | | + | | nistAlgorithms(4) hashAlgs(2) 1 | | + +-----------+---------------------------------+---------------+ + | id-sha512 | joint-iso-itu-t(2) country(16) | [RFC6234] | + | | us(840) organization(1) | | + | | gov(101) csor(3) | | + | | nistAlgorithms(4) hashAlgs(2) 3 | | + +-----------+---------------------------------+---------------+ + + Table 10: Hash algorithms used in Composite Constructions + +Appendix B. Samples + +B.1. Explicit Composite Signature Examples + +B.1.1. MLDSA44-ECDSA-P256-SHA256 Public Key + + -----BEGIN PUBLIC KEY----- + MIIFfzANBgtghkgBhvprUAgBBAOCBWwAMIIFZwSCBSAA9DTYoQys3PVrayi9zTam + kTzpqf6vuNI5+UaMENvnrq3Rps5LmiQ5gSXaQMu0HYjVpCEQVQWl/8nbJavELelk + gCVn528ndGBQUChAnffxhRdxgaFmOb2SEySTnHIh6QO1UFPO2kGiGx9zU6F9xZGK + FZFBm8B076UvRHCbaw+BTvu4o+Kg1irOFRPI3hLN4ku3si2nwWSZNhDoiLaPTfJe + 7TRziBznEyrnSV3I2Xn7QdKxIWUFOwPXWBnnk/FGG/A2HdxGpiqIWxZ0gNLNcb+j + Cz6CWZSJhoOLoJWdOD5zyojPPrH5iFIGM96p0PZ4mv5PhmZDPA/RTIg/PcG1rywn + OJYqAsazntGyEhHEFLRe8QYOVEbiBuv20tNzkFaaulQRdW+boStcW8NefSkKG/9D + FgGnyR87W4Z/ieHEyIva4FBamvRm60xrblAyI0Z7II4l7LTStDzL/ghFq06RVria + au+mY5laq8rAGmRbWkUxNeKeGOVHxjGFYB3uaAkHef0o7tSMMkCSSjiDQlNk5ReQ + xgJMkuTRE7YRN1bDXv/0uPPjg7zfa3M0tMCD9wTXFhIk04HDLVV5WAsH0EK6Nytd + gqnsjGCwfZb2+Fw/QytBei50DUBHpIG3da4dBrxcaRTMiQPzPzL8FaDascE0ZIJM + 9ilKvxgq02ryEHLGALFN8eZD1r6zq43KFlRzaynWBWqJ27MiUzK2dk8oC+dH5cz6 + +xGXAhLJ+MipoO9k9dLg8re3dOAufsKaY5DLuuluo7dO6IF7rG9xblbiIzWpyfu3 + 7kJvUdwk36QzsQNGsxpELk65LaWYnaebV7wKyIaaniLysuNCG0dIcAicxRNLgpX9 + jic5pi+BzlJI1IuPk+DqOG57pNnU7lTg3op08MUslNyeUH5yaag8DNsLG7uZHzvx + jcqffaqcqS+v6FVmbV2tDF07jn8a754Fnn/QNgsNcdfw9Ov4w7Ty+q5nT2wg2Lsg + bAuzN6b6FiWEuHHMw/I5aIL5cLj2GUpjHtlUHL4KEHpxZ2J5jbBgeqpTWEy1TuPQ + R34lryVASmue/kmk2liah6wNK5RXlGa8uidBm7RT8b5SkIMsrosLx9KpC5lKobzn + 8ttK1NSy0ZuMDw9wtnePUbROGjEuw5Na/K1VgO68dATj/7rscvz7C+ZuQORrt88X + +OZmoyw+fEDWAocDnhzI6rJIHLPB0p+rSJ8iSKZpFZYeIy+CD0t6E98RJQHll8BJ + lLyJiMT0xAyelOMzrCJayHxD01aLw6LLOddFbiIRMq4lni5Ha4noWmdO2C80xy3A + jskUEK5sbD8KFl910JUHwaGvb/gDCqW+n10mRa9+cB0tRVjo5OZeSiB01Bkagu7a + f+bRv2i8cBa2ZoGVyW3xFFFhIkHzLgHaU+RLaGwJDe0qxKtwKYz5c/YpAsH+lodM + NV2E/PzHtNY+sg0PijblN6IVO+yiLkxJspKIjf0I1+s8hczhz3QkLRed7dU2nvID + puJQfgraKyS6rawlqLyWo66/PDtdd3tngw50wnDNZik0hz/usDc6o7IN5J9ha7XO + 0vZQluMb9R5l+W6RLD2nRd4mlKVqm/Yfq0R8PKoIh8f7uLVk1kbN4prkfpsokvqR + rli5h4URG7WCNvp4bg/i1Ix/CEEjH56LRj83dhVB0O6WXorrZMAChQShMhwnEgeS + USaB5au7xRAM+9fWvF9cmju3hXSTT1zv0owyoSgp36OHcy2HzwZXxA7YWtRDbhMX + BEEEkSZvSVDhZlBXhAkaTBxlrRt624URpHlDVrd0njnPiR92XNs+NTjjvAImETMh + EPbQ/KPspugi6gkrLFhcmy/OiA== + -----END PUBLIC KEY----- + +B.1.2. MLDSA44-ECDSA-P256 Private Key + + -----BEGIN PRIVATE KEY----- + MIIPmQIBADANBgtghkgBhvprUAgBBASCD4Mwgg9/BIIPAAD0NNihDKzc9WtrKL3N + NqaRPOmp/q+40jn5RowQ2+euyt08tCb8n+fyXPTeYUqTRyok4CwyZDOBvRgzjQPo + ViTIHTQcWno6KkNnRaLLCmpapjHbTJvbRoBb09RllNQwzuM4KaISDYuwUNikESKz + ZUGAIGIyMiSHReImUtAkEkTGgcQEBIAGIsQ2ZoiERQpEJVsGKRzDiCEHaYnEjBJA + MeSmKFkIKiAXYUoYaZQkhkEWYSSFLQkkYgoEKiICZhMAIuDEAMu2YJu2aBmXjQCC + ASMEBVAoaFkiAJhEUcySIaAIEQgyISMTbBM4JqLESIMmRWDISQkHTplGahiQTMQY + JpQ2ZKQGgWMUaNCEkdAmZQHBKdJAShG0TYCikCNCcNLAcYkgQiOhcUHCZYCGROQo + YOEkZiRGkFnGiAsoYEsIYCOxaFQSAYy4EYIYRsQYRNuUSNooaUQGIMg0DdioAAsQ + RYMghgSlUNK4gVLACQgRSAkxDIs0QhEoRoKEQMMoMMSmTWNEDqOkMRw2AWSgUAQR + MaSiYAgmkeFGbtuIhFRAcSQyUWMYZIKEQNo0KkmkgVsiEcMGJJQgMko2JFKGMBmQ + RQzHhBsAASQZbNEQcVCGYZkIjkMYKpJChKEUhQSRgCTEIaEkkYSUQeMmkmSibGK0 + TBopYAAmgVogBmIkauGADBKHKAoVQRhCYhoXUsCYgOCYJRDFgYsCLAuiEFE0ghEo + UQwSAUK2AUSAKMQobSMmcRQVbEQUDgA0MNwEhEjEaAQTaAKCjAMEcAyBSVgUZkAS + jUIQkWTCCRQVcAA2KllIAAIRQoLELRuzaCIRiZkGbNpIgYBIAQggIuOUTIzCMCI3 + BoIIBcuEBYLIgMmEcZmkkEAwMEGSZRKXQKIEkcGERIFCCeEyIouYaQoEhsM2jdBI + JhS5YBAycSEEkOSAiGIYJgiQbVKkYZLIARmXTBvJjRIWYMI0RBGUkdQmZuO0QaOg + gcQGjNI4EFIyBVREAsMkIRoBClRIbgMUgVFIUgNCcVGmhBC3kdtEBBw0EVlEiRsC + YuKYCZumMFwyCMmCaYAoCgAWLBFAIqBELAGxcBoJQlKmYKCWgMKEUYQGZMqiDMqm + JRnHIJEoaAJHgByhBBIpCeQiBNAYSSEQQNKUUaMyMYs2DnQ5Y0NY1PJ+TCmdgiin + NmiycZW2gsYQVPr8uCyDiEcLELhhZoHkFkvKWQP2Y1iviJ+tgiKFSwbMipJmOq/I + hovLcLpcDIwxtiwJPsGtozGSuMwx/Se6MpI3omJT/z9a3fwV8gLxcbNiWw2UjB3N + 3/BPb7Jr4F7Fu+9G4nwZI4kK4LRJ4/zgcqb0Jq/2vhLIoEQ5TpHdn2KSqrY4nHH7 + Hmh74HaXrY7JHqUgj2xVwZQuW09AnjIpy7NQW8I3oNkRxf2YNqIM6pIgAHDDNbkS + FeJVp+5EhxmUTDgOwGM3kZg4enFT13auoY8iCbt8PhO3STSpo+A2he1wlmodsBvr + h42v9TpKJJW/2w0IB432RGbjCW0jiIJa5FO1jh3eH822vLnVs9VescBszHDjQRu3 + +fyxFIAc/0jYYTgIFfrPqEwXZC2FA3UfpqQE7KtjTv2gN64E0/hSuBTrH2NG9Pvt + zlj04xtjMqiI3vULH9nTRcufSF/xO3POtty3zvEdBf/d+v9DKn7q6qaAB4rW6j4r + O9+WwiSowZ2lYv7vQnHT90bVKn0jHGGcHgfAlSNg7ecWBL8k+iL/U7zeAUAl9FNT + 44X1eNYZZcy8MqjGiQSTIHFAQd3v93gflbAQVHC/6KDnn1OxbrhOgft2VgjjqggQ + W/jFfO/TDmaLvS3Igxsgud2H3byHOSLh2nd2bHm8yXXVUMJ3otg2/x8KnDS4Du/b + ORJSskflf0zUkfiDILHGm48bwYsvDxXc7rnIvqI7B4rrH2DzcG5Ve/kYUtOikvXu + hx01JbV2xQQfIvGWjpZWoG9GticpP3ZyRzMDSuPudiLBjVhQ0lutNvzuLclqGTVX + LshLtF1oF5nmFQTi/GExi4oUZ4ckD2V5om/fcG9Wdnn/IFVAqO0DM0SzCw1kdKbP + X97j9nOmgrrT9lnI4O5cQckjvfvGrbbM4oRNW7aInwA/SpYaXt+BnvkEt/BXTuQx + lg/g7asWzUSEqKoxM2wC5E8FqiupKMqKrdZP8wRpOrv2KikVMg9d9PM4GrCVcjKI + Xv1fyZW/H3eugnrr8/Po9J8RZkkqBUTVMXPAIju63yuqcMvU1AQRyiMo8BcdFRo4 + hufRFe2K7APSGybKE5LgVALUGZ70GUl85bYVjnLslcHeZdySnXo82H+HNTM8UqKc + 9BXGAJS+1Zb12fgTemZO/5PBfcgS+axLiRwUCSZDA/Hlev86OgHsjnRt3JjuNfX0 + L3bHZ+9DTzRADJnm7Lyj7ylKlUuvoH+7WaPMmBiduXuuQ/k1iLOMq0TZa/T31UtP + izx6M9+1+SirJS0Dzgy5XDSCfc/I0u/lUtf1kynwSmAlLSG7YAbt1Ua/2k+5CW31 + UZZdaw2HSVGFnT2PwSlXRnlq+FEdXVbzJA39oS/CNEOM/qdnRL8cU4rU40Xn0sm+ + egIjYlKjKml1Dg+hVFuYvk7tY+ZUEk8mOuTFlsB1f125X80L5EnhYOeTHpn+muEt + GyoMCpdBwxV5AoQi/5DhzPqO8IPUwsjXHRKONcP2s6ibUC58HqkCmocTRJApAu9K + GZQnmcXwrSvV09AMhND3oNTIRup+pi1TSfETZGyYqouPJNgf5/3rzICwrxBfBz3c + +CDn0ELMhADS9lBQ2iLENSTYE9jCaoX+RFKQJIkJWd1GMHs6xoyNxSf9udsShyyS + aXPor4zprUON9lhzh4wcTZT9gsgkb1TesKRzkUe4/uzeDcAr2K3QgRq4H5a2F4Vt + ZJ13x+9sSrnAqPF8YMmwHEmky6Ny/m37lGKAbupMfW/vopEyQf4G9F7bqgiTJVPX + MmsvnYL0UF4LcQ5t22Vw4B1DVkrJ0itoQxFJHl4k1KFIv1k4XYVviKgmLHaNWhQo + N3rVN8sRQ+adm39D4ckB+btqNbD10hUxDiuJcouslXcYl8AoLJ82PdfItIbECKdA + zbF8HAKTMHHsexPls0BrDOrgH/Y/tvp2Gmgup56OwQNq2Hpnxnh2yNV64yk1A9Sm + 4UhGenN0vIo2Ro3+RKo1pAEf6MJG7ZeLGb4xFiDfSweKQaIEtDuR86rw/AYGXlfu + OXJaNWeMDNmu/WltbjSWflpIpIKYFF8sdhkHfQpTX/XUaVZR93rS4ChtORKha+UL + /56l2DFTItDoOJ4R05PAgq6LEGz5Nr/dCRoAcpsXyj28BS3iD215llxthHMWdB6l + LUBX4IjSn+ZG8EeDCRy3E5ZBAPQ02KEMrNz1a2sovc02ppE86an+r7jSOflGjBDb + 566t0abOS5okOYEl2kDLtB2I1aQhEFUFpf/J2yWrxC3pZIAlZ+dvJ3RgUFAoQJ33 + 8YUXcYGhZjm9khMkk5xyIekDtVBTztpBohsfc1OhfcWRihWRQZvAdO+lL0Rwm2sP + gU77uKPioNYqzhUTyN4SzeJLt7Itp8FkmTYQ6Ii2j03yXu00c4gc5xMq50ldyNl5 + +0HSsSFlBTsD11gZ55PxRhvwNh3cRqYqiFsWdIDSzXG/ows+glmUiYaDi6CVnTg+ + c8qIzz6x+YhSBjPeqdD2eJr+T4ZmQzwP0UyIPz3Bta8sJziWKgLGs57RshIRxBS0 + XvEGDlRG4gbr9tLTc5BWmrpUEXVvm6ErXFvDXn0pChv/QxYBp8kfO1uGf4nhxMiL + 2uBQWpr0ZutMa25QMiNGeyCOJey00rQ8y/4IRatOkVa4mmrvpmOZWqvKwBpkW1pF + MTXinhjlR8YxhWAd7mgJB3n9KO7UjDJAkko4g0JTZOUXkMYCTJLk0RO2ETdWw17/ + 9Ljz44O832tzNLTAg/cE1xYSJNOBwy1VeVgLB9BCujcrXYKp7IxgsH2W9vhcP0Mr + QXoudA1AR6SBt3WuHQa8XGkUzIkD8z8y/BWg2rHBNGSCTPYpSr8YKtNq8hByxgCx + TfHmQ9a+s6uNyhZUc2sp1gVqiduzIlMytnZPKAvnR+XM+vsRlwISyfjIqaDvZPXS + 4PK3t3TgLn7CmmOQy7rpbqO3TuiBe6xvcW5W4iM1qcn7t+5Cb1HcJN+kM7EDRrMa + RC5OuS2lmJ2nm1e8CsiGmp4i8rLjQhtHSHAInMUTS4KV/Y4nOaYvgc5SSNSLj5Pg + 6jhue6TZ1O5U4N6KdPDFLJTcnlB+cmmoPAzbCxu7mR878Y3Kn32qnKkvr+hVZm1d + rQxdO45/Gu+eBZ5/0DYLDXHX8PTr+MO08vquZ09sINi7IGwLszem+hYlhLhxzMPy + OWiC+XC49hlKYx7ZVBy+ChB6cWdieY2wYHqqU1hMtU7j0Ed+Ja8lQEprnv5JpNpY + moesDSuUV5RmvLonQZu0U/G+UpCDLK6LC8fSqQuZSqG85/LbStTUstGbjA8PcLZ3 + j1G0ThoxLsOTWvytVYDuvHQE4/+67HL8+wvmbkDka7fPF/jmZqMsPnxA1gKHA54c + yOqySByzwdKfq0ifIkimaRWWHiMvgg9LehPfESUB5ZfASZS8iYjE9MQMnpTjM6wi + Wsh8Q9NWi8OiyznXRW4iETKuJZ4uR2uJ6FpnTtgvNMctwI7JFBCubGw/ChZfddCV + B8Ghr2/4Awqlvp9dJkWvfnAdLUVY6OTmXkogdNQZGoLu2n/m0b9ovHAWtmaBlclt + 8RRRYSJB8y4B2lPkS2hsCQ3tKsSrcCmM+XP2KQLB/paHTDVdhPz8x7TWPrIND4o2 + 5TeiFTvsoi5MSbKSiI39CNfrPIXM4c90JC0Xne3VNp7yA6biUH4K2iskuq2sJai8 + lqOuvzw7XXd7Z4MOdMJwzWYpNIc/7rA3OqOyDeSfYWu1ztL2UJbjG/UeZflukSw9 + p0XeJpSlapv2H6tEfDyqCIfH+7i1ZNZGzeKa5H6bKJL6ka5YuYeFERu1gjb6eG4P + 4tSMfwhBIx+ei0Y/N3YVQdDull6K62TAAoUEoTIcJxIHklEmgeWru8UQDPvX1rxf + XJo7t4V0k09c79KMMqEoKd+jh3Mth88GV8QO2FrUQ24TFwR5MHcCAQEEIOu1IEuD + uM16fyp4k0FSfEP+H1ka3o07lfZmk56nHuiloAoGCCqGSM49AwEHoUQDQgAEkSZv + SVDhZlBXhAkaTBxlrRt624URpHlDVrd0njnPiR92XNs+NTjjvAImETMhEPbQ/KPs + pugi6gkrLFhcmy/OiA== + -----END PRIVATE KEY----- + +B.1.3. MLDSA44-ECDSA-P256 Self-Signed X509 Certificate + + -----BEGIN CERTIFICATE----- + MIIP9zCCBhigAwIBAgIUUFXlmVgQD4nQC6Tzr4OlRKxVYYQwDQYLYIZIAYb6a1AI + AQQwEjEQMA4GA1UEAwwHb3FzdGVzdDAeFw0yMzEyMTkxOTIzNDBaFw0yNDEyMTgx + OTIzNDBaMBIxEDAOBgNVBAMMB29xc3Rlc3QwggV/MA0GC2CGSAGG+mtQCAEEA4IF + bAAwggVnBIIFIAD0NNihDKzc9WtrKL3NNqaRPOmp/q+40jn5RowQ2+eurdGmzkua + JDmBJdpAy7QdiNWkIRBVBaX/ydslq8Qt6WSAJWfnbyd0YFBQKECd9/GFF3GBoWY5 + vZITJJOcciHpA7VQU87aQaIbH3NToX3FkYoVkUGbwHTvpS9EcJtrD4FO+7ij4qDW + Ks4VE8jeEs3iS7eyLafBZJk2EOiIto9N8l7tNHOIHOcTKudJXcjZeftB0rEhZQU7 + A9dYGeeT8UYb8DYd3EamKohbFnSA0s1xv6MLPoJZlImGg4uglZ04PnPKiM8+sfmI + UgYz3qnQ9nia/k+GZkM8D9FMiD89wbWvLCc4lioCxrOe0bISEcQUtF7xBg5URuIG + 6/bS03OQVpq6VBF1b5uhK1xbw159KQob/0MWAafJHztbhn+J4cTIi9rgUFqa9Gbr + TGtuUDIjRnsgjiXstNK0PMv+CEWrTpFWuJpq76ZjmVqrysAaZFtaRTE14p4Y5UfG + MYVgHe5oCQd5/Sju1IwyQJJKOINCU2TlF5DGAkyS5NETthE3VsNe//S48+ODvN9r + czS0wIP3BNcWEiTTgcMtVXlYCwfQQro3K12CqeyMYLB9lvb4XD9DK0F6LnQNQEek + gbd1rh0GvFxpFMyJA/M/MvwVoNqxwTRkgkz2KUq/GCrTavIQcsYAsU3x5kPWvrOr + jcoWVHNrKdYFaonbsyJTMrZ2TygL50flzPr7EZcCEsn4yKmg72T10uDyt7d04C5+ + wppjkMu66W6jt07ogXusb3FuVuIjNanJ+7fuQm9R3CTfpDOxA0azGkQuTrktpZid + p5tXvArIhpqeIvKy40IbR0hwCJzFE0uClf2OJzmmL4HOUkjUi4+T4Oo4bnuk2dTu + VODeinTwxSyU3J5QfnJpqDwM2wsbu5kfO/GNyp99qpypL6/oVWZtXa0MXTuOfxrv + ngWef9A2Cw1x1/D06/jDtPL6rmdPbCDYuyBsC7M3pvoWJYS4cczD8jlogvlwuPYZ + SmMe2VQcvgoQenFnYnmNsGB6qlNYTLVO49BHfiWvJUBKa57+SaTaWJqHrA0rlFeU + Zry6J0GbtFPxvlKQgyyuiwvH0qkLmUqhvOfy20rU1LLRm4wPD3C2d49RtE4aMS7D + k1r8rVWA7rx0BOP/uuxy/PsL5m5A5Gu3zxf45majLD58QNYChwOeHMjqskgcs8HS + n6tInyJIpmkVlh4jL4IPS3oT3xElAeWXwEmUvImIxPTEDJ6U4zOsIlrIfEPTVovD + oss510VuIhEyriWeLkdriehaZ07YLzTHLcCOyRQQrmxsPwoWX3XQlQfBoa9v+AMK + pb6fXSZFr35wHS1FWOjk5l5KIHTUGRqC7tp/5tG/aLxwFrZmgZXJbfEUUWEiQfMu + AdpT5EtobAkN7SrEq3ApjPlz9ikCwf6Wh0w1XYT8/Me01j6yDQ+KNuU3ohU77KIu + TEmykoiN/QjX6zyFzOHPdCQtF53t1Tae8gOm4lB+CtorJLqtrCWovJajrr88O113 + e2eDDnTCcM1mKTSHP+6wNzqjsg3kn2Frtc7S9lCW4xv1HmX5bpEsPadF3iaUpWqb + 9h+rRHw8qgiHx/u4tWTWRs3imuR+myiS+pGuWLmHhREbtYI2+nhuD+LUjH8IQSMf + notGPzd2FUHQ7pZeiutkwAKFBKEyHCcSB5JRJoHlq7vFEAz719a8X1yaO7eFdJNP + XO/SjDKhKCnfo4dzLYfPBlfEDtha1ENuExcEQQSRJm9JUOFmUFeECRpMHGWtG3rb + hRGkeUNWt3SeOc+JH3Zc2z41OOO8AiYRMyEQ9tD8o+ym6CLqCSssWFybL86IoyEw + HzAdBgNVHQ4EFgQUhcS/LyOtUFUrF+FJxoSERDrtcXQwDQYLYIZIAYb6a1AIAQQD + ggnIADCCCcMDggl1AMX5C7IKC8y1AX2ANKQWQWycGovPVFkiv+qctjfWt0jaErT1 + XnR80WfR3XX1rIIZ6jG1ulkLdUGx2tFcu8Qeb0umxvYWYC6htzvGw+bjxcRm0DES + d+bkwWIBzdK23b9WqBNLqvzNccgAPXvP6PwrLxCz+sEnWcCDDqgeHphbYf3vzedR + uMvIsRYqGO09qt/tWu3JG5nwGiX+6t/YFgE5knii3sXdlHWZQ+nSAnekc2sgtCV4 + cA0Lg01kBi+AZGelNuVK3EtgKJ0VTP5DQn5D1dLn/RGbqlMngsNs4xUlIFyvnJ8l + UZp6+VtfE2fWRDW4yQ4ob4Ed2KEWMtWa1GaFtIfUjDGyqYLwMOJUjE5fmhLxioqS + pk/cST+AaK5iNZzlDRC220hGOIOsiyf7UQKw+bFTENVqyXrYgTmns9zg+mc5KeZj + hE6IMFMtkQyJnRVWUL1eRviu1JL90Tcmvw1gvKdGFPDe4A7FWx0tDyAVY1wVd/sd + Lylt5QvBaIqgrtc4rDeS5pHGNdgy3zsi1YYpet5pyfQwZCtmqRggBDTCmH7nTfrV + rXDbsUm0euCK+YMwbi6DbpDV5mQrUqDX1MGk0RFDzlKRtTWrvxhhCVLgV/l/ZVgi + bEuFQg6POuCn0IA2jFJyza2TK8p82RAZbcvtM8XdJVhM0okKIRyi/8lw2kbX/p5L + l7vMmD0xPOezi2FQMxev9460Seb6FtOlvFptsLoTw4grUTQHl9brftzPAhVmUBBY + wGffj4rl70m5fHZzL3YXpxkr4jlqG8tKJc9370Emh9xXV4KMuo2Us+vnRUN+9QeX + tvDaG70jX3+760hTl4qDqMWfXY1nXhCeHWGCCmn2Yq8ULdYtIjZIMcHCXAvy68jv + 7vkM5xQzDdgRMXop1Pj3aZLRI0boQ4OuR16sxmmpPUIGanfmDbvrdBBNucNcDYDy + BU5QpuCEZ8yHs94TSWLO9KP9i+IlL35TGG2zIbwbhI15HKOWzZU9ncoC2BOF6zhw + u60tdBvy5O8pinjMBQKVDPMbrIKjfCUK4f0YQ1/Bk4ssPogQNk3sRYJqWZ0MvElk + q3674KpN0OVB/kJFdAB1Uqpk4ARnZ7SsO8B/6u7rRNdthHSRsu4Fhe31EE0VUoUh + x3GQM/7gTk9El2jDBlZxwEpPEtTqARgp0ad6EJnMcIW0PEKr56HUFqfxKVjJWagV + fhtKzskghDS5lRpDY3vPq1Cq8qSl1ojcij5zm0BxI/cJIjh41RnW5D3kjt3r3Fzo + an4pPZkXzZm9/iGAoFAy7BThfg4PXVq2BMCNZPdASQjIiPEWklylW9iX+g/12iCV + Gy7F/JOG0SOH5/2d12gRDDiwn6k1KDwKPDa9htaPBGaNNXLIpr/Wb68GtTkNs1TG + e7Sf9aigE9BtTGgeniJ1Gn/aV9LGQFqRRQsnqB98bMKABZi0RjZ9yebLj6lwSFXU + pTdq/YNnBGwAmOm/HXzksOHJOjh20iDPhLjfMB6Fi+XkWVZ0TWzV2ZwOtM56tY+a + QoauIHR30QYtGZMI38HpVeLSj+iNUEKbE6kY5c69Bjalwa1pCqb9aP5VnKOkMA+3 + qQ6c2ggxgudchBSXK/BZw4n4l7IvHu9wEMvsVh9mt/SAGkK53k28RDkNtX7+jfJR + 5/q7Qp626ts6Sc8rG6BmZoJIJnUXjeOcqlAoDXYRGuxCw6Jm91DL9j4t3m0bQhub + hUt9diovZ/hw2hOng+xT/oSVvauPHFpxSUu3NVcncjIljD+0U3y6cn9VnE7oFNSU + G3HadJlVTZncMrWYo954Wt3cwNA1Opcq+5Tlu76laOWJ/4eRcvOwmxrKZHUW8Tmu + qPPsAOTagFmMxOBkLzIaq39SZxHkw61SdJxXlKAtmZYnNvwT2NGpauF6P6G0FHAO + Ucfu/DDpAdKZ/GGpVxC2ttfDCzO3iya139M5fbg32RpI0q18swYFhUAqszdAPihc + 4lpCGw9JdrO8i1JhB+IORJegJRPs08DYUNv7nzSbOi03iYY/QHtGw7ka5AGLfkY8 + ajiLzlXwI2xMB6XBqUsAH2VxTRPJ3N/kGTzFvhiGBOYx8+jO/FqEa5E8+cafU+kW + m9/RCpumizdVzrH5MiFh0NI9iUegdHs+hDW6GDpA3VpGi5MmmeE6Ck8UyOzDNnY9 + t53b9QxuwiYgDdw9z0KpYtGt7tRGd0qDARky8uRQZ6HFS4sNXlUFiAG9ko62CFTD + WCALXmhtqvPcjfiDDL6qMRLevi31YnhAua/Kb0Mhja+KDM/UwRIVaB3WHhulzn7U + pFQG0vVnwb0+VWhKsrWVJaJw1Eg9tmy5HJBsnmne+A2qG1ehBFCWJtV2MvyK8H9G + BxaJbq7PpPlte9ID53apvkhyvag843Ar/pOiTc8J6xncJa6w+mVViUi47/ZkZCkU + lipgCv1ZqZhQG/CERDxACulTa+0S8nO+g5CBpW6cuQVa052nRV/qhVUkQ9yzm0Pw + vUOftuX9b/W5QXas/ysUwPAeGd2XPBmK5lByyYaW14d6GBJGmyNYv7vjrbL1xeJr + smjnaRPipOvwEh6IE1OdsrlqfjG27+aXgfZWbCW28DAeTK7ilLB3ubyvPcoTrmX3 + DxM7OKF+MT6PAtqSM92l76PfECvyUfv/Rf+cSF/CleTIM7xfe7IOwgxPPdMEw2rH + uS/CeJMsdBW8DwQyRcgK5h17zyaRqztATSAQK3MQ/B2f7MoXf3Z9oLpgqyBT7aiL + /XdYk8UipIyuRK4Y9Cj2UNc3DgYhzFPQY9SO3gO483uC8Tqc2IyoKaGsNS1rWY/W + rleqqraEmlMN9NToAa4ftZvqdWQLqH7sJcCQ1EzfbrkyrTKgjRmvRyA4n3t9Yjry + k+ZI3xkgrUj90xfETb+Vx/JrbegfbfZ70w7yTRnSDB01cbQP4rjI2uGZVRCxXJal + XRtaOUey+c0ZeIRp2aPrYP2DesL0Fmlc/ooSRgC8f+QHJU/7Js+WYuK8MVK/vil9 + J9FgwoCJImfRzkA9KXYaix/f4XgvFLopb6kAszAff5Zmpcq72gwWv+nEE/3M78PO + zs9k5+wt65W3h4zelAIUM5hfgmJj4vvq53AeZP42AhcSV+bgsPg2xGM0Im7WAQ0P + IScqN1pepq7T9/0eMEhRdXiKj5ufub/Nztfc+Ao8RVVidXt8oMnv9vf8FxgfLkpj + dn6Mjq7Y5OXz9AAAAAAAAAAAAAAAAAAAAAAAAAAOHy09A0gAMEUCIQDD13F6CblJ + Ll2dp7GZtR5tyKObPtvUc1s16fP3g7xhvgIga8IVcv0k6DUIApPztCsP/UByrm8k + 1nbSe/5A4mF87n0= + -----END CERTIFICATE----- + +Appendix C. Implementation Considerations + +C.1. FIPS certification + + One of the primary design goals of this specification is for the + overall composite algorithm to be able to be considered FIPS-approved + even when one of the component algorithms is not. + + Implementors seeking FIPS certification of a composite Signature + algorithm where only one of the component algorithms has been FIPS- + validated or FIPS-approved should credit the FIPS-validated component + algorithm with full security strength, the non-FIPS-validated + component algorithm with zero security, and the overall composite + should be considered at least as strong and thus FIPS-approved. + + The authors wish to note that this gives composite algorithms great + future utility both for future cryptographic migrations as well as + bridging across jurisdictions, for example defining composite + algorithms which combine FIPS cryptography with cryptography from a + different national standards body. + +C.2. Backwards Compatibility + + The term "backwards compatibility" is used here to mean something + more specific; that existing systems as they are deployed today can + interoperate with the upgraded systems of the future. This draft + explicitly does not provide backwards compatibility, only upgraded + systems will understand the OIDs defined in this document. + + If backwards compatibility is required, then additional mechanisms + will be needed. Migration and interoperability concerns need to be + thought about in the context of various types of protocols that make + use of X.509 and PKIX with relation to digital signature objects, + from online negotiated protocols such as TLS 1.3 [RFC8446] and IKEv2 + [RFC7296], to non-negotiated asynchronous protocols such as S/MIME + signed email [RFC8551], document signing such as in the context of + the European eIDAS regulations [eIDAS2014], and publicly trusted code + signing [codeSigningBRsv2.8], as well as myriad other standardized + and proprietary protocols and applications that leverage CMS + [RFC5652] signed structures. Composite simplifies the protocol + design work because it can be implemented as a signature algorithm + that fits into existing systems. + +C.2.1. Hybrid Extensions (Keys and Signatures) + + The use of Composite Crypto provides the possibility to process + multiple algorithms without changing the logic of applications but + updating the cryptographic libraries: one-time change across the + whole system. However, when it is not possible to upgrade the crypto + engines/libraries, it is possible to leverage X.509 extensions to + encode the additional keys and signatures. When the custom + extensions are not marked critical, although this approach provides + the most backward-compatible approach where clients can simply ignore + the post-quantum (or extra) keys and signatures, it also requires all + applications to be updated for correctly processing multiple + algorithms together. + +Appendix D. Intellectual Property Considerations + + The following IPR Disclosure relates to this draft: + + https://datatracker.ietf.org/ipr/3588/ + +Appendix E. Contributors and Acknowledgements + + This document incorporates contributions and comments from a large + group of experts. The Editors would especially like to acknowledge + the expertise and tireless dedication of the following people, who + attended many long meetings and generated millions of bytes of + electronic mail and VOIP traffic over the past few years in pursuit + of this document: + + Daniel Van Geest (CryptoNext), Britta Hale, Tim Hollebeek (Digicert), + Panos Kampanakis (Cisco Systems), Richard Kisley (IBM), Serge Mister + (Entrust), François Rousseau, Falko Strenzke, Felipe Ventura + (Entrust), Alexander Ralien (Siemens), José Ignacio Escribano and Jan + Oupický 陳志華 (Abel C. H. Chen, Chunghwa Telecom) 林邦曄 (Austin Lin, + Chunghwa Telecom) + + We are grateful to all, including any contributors who may have been + inadvertently omitted from this list. + + This document borrows text from similar documents, including those + referenced below. Thanks go to the authors of those documents. + "Copying always makes things easier and less error prone" - + [RFC8411]. + +E.1. Making contributions + + Additional contributions to this draft are welcome. Please see the + working copy of this draft at, as well as open issues at: + + https://github.com/lamps-wg/draft-composite-sigs + +Authors' Addresses + + Mike Ounsworth + Entrust Limited + 2500 Solandt Road – Suite 100 + Ottawa, Ontario K2K 3G5 + Canada + Email: mike.ounsworth@entrust.com + + + John Gray + Entrust Limited + 2500 Solandt Road – Suite 100 + Ottawa, Ontario K2K 3G5 + Canada + Email: john.gray@entrust.com + + + Massimiliano Pala + OpenCA Labs + New York City, New York, + United States of America + Email: director@openca.org + + + Jan Klaussner + Bundesdruckerei GmbH + Kommandantenstr. 18 + 10969 Berlin + Germany + Email: jan.klaussner@bdr.de + + + Scott Fluhrer + Cisco Systems + Email: sfluhrer@cisco.com diff --git a/mikeo_selection_criteria/index.html b/mikeo_selection_criteria/index.html new file mode 100644 index 0000000..664a5a8 --- /dev/null +++ b/mikeo_selection_criteria/index.html @@ -0,0 +1,45 @@ + + + + lamps-wg/draft-composite-sigs mikeo_selection_criteria preview + + + + +

Editor's drafts for mikeo_selection_criteria branch of lamps-wg/draft-composite-sigs

+ + + + + + +
PQ Composite ML-DSAplain textsame as main
+ + +