-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMarchingCubes.compute
279 lines (235 loc) · 6.71 KB
/
MarchingCubes.compute
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#pragma kernel Calculate
// Define fallof function to be used. Options: GENERIC_METABALL_FUNCTION, ELECTRIC_POTENTIAL_FUNCTION
#define GENERIC_METABALL_FUNCTION
//
// structs and buffers associated with them
//
struct Values {
float v0, v1, v2, v3, v4, v5, v6, v7;
};
struct Cubes {
float3 centerPos;
float3 v0, v1, v2, v3, v4, v5, v6, v7;
};
struct Vertices {
int index;
float3 v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11;
};
struct Blob {
float factor;
float3 position;
};
StructuredBuffer<Cubes> cubes;
StructuredBuffer<Blob> blobs;
StructuredBuffer<float3> vertMap;
RWStructuredBuffer<Vertices> vertices;
//
// misc variables
//
int xCubes;
int yCubes;
int numBlobs;
float threshold;
//
// lookup tables
//
static uint vertTable[256] = {
0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0
};
static int verticesAtEndsOfVerts[24] = {
0, 1,
1, 2,
2, 3,
3, 0,
4, 5,
5, 6,
6, 7,
7, 4,
0, 4,
1, 5,
2, 6,
3, 7
};
//
// helper functions
//
int findIndex(Values vertValue) {
int cubeIndex = 0;
if (vertValue.v0 > threshold) {
cubeIndex += 1;
}
if (vertValue.v1 > threshold) {
cubeIndex += 2;
}
if (vertValue.v2 > threshold) {
cubeIndex += 4;
}
if (vertValue.v3 > threshold) {
cubeIndex += 8;
}
if (vertValue.v4 > threshold) {
cubeIndex += 16;
}
if (vertValue.v5 > threshold) {
cubeIndex += 32;
}
if (vertValue.v6 > threshold) {
cubeIndex += 64;
}
if (vertValue.v7 > threshold) {
cubeIndex += 128;
}
return cubeIndex;
}
float getValueAtVert(Values val, int i) {
if (i == 0) {
return val.v0;
}
else if (i == 1) {
return val.v1;
}
else if (i == 2) {
return val.v2;
}
else if (i == 3) {
return val.v3;
}
else if (i == 4) {
return val.v4;
}
else if (i == 5) {
return val.v5;
}
else if (i == 6) {
return val.v6;
}
else {
return val.v7;
}
}
Values zeroValuesStruct() {
Values val;
val.v0 = 0;
val.v1 = 0;
val.v2 = 0;
val.v3 = 0;
val.v4 = 0;
val.v5 = 0;
val.v6 = 0;
val.v7 = 0;
return val;
}
//
// field function evaluation
//
float metaballFalloffFunction(float factor, float3 dist) {
#ifdef GENERIC_METABALL_FUNCTION
return factor / (dist.x * dist.x + dist.y * dist.y + dist.z * dist.z);
#endif
}
Values evaluateFieldFunction(int pos) {
Values vertValues = zeroValuesStruct();
for (int i = 0; i < numBlobs; i++) {
float3 dist = cubes[pos].v0 - blobs[i].position;
vertValues.v0 += metaballFalloffFunction(blobs[i].factor, dist);
dist = cubes[pos].v1 - blobs[i].position;
vertValues.v1 += metaballFalloffFunction(blobs[i].factor, dist);
dist = cubes[pos].v2 - blobs[i].position;
vertValues.v2 += metaballFalloffFunction(blobs[i].factor, dist);
dist = cubes[pos].v3 - blobs[i].position;
vertValues.v3 += metaballFalloffFunction(blobs[i].factor, dist);
dist = cubes[pos].v4 - blobs[i].position;
vertValues.v4 += metaballFalloffFunction(blobs[i].factor, dist);
dist = cubes[pos].v5 - blobs[i].position;
vertValues.v5 += metaballFalloffFunction(blobs[i].factor, dist);
dist = cubes[pos].v6 - blobs[i].position;
vertValues.v6 += metaballFalloffFunction(blobs[i].factor, dist);
dist = cubes[pos].v7 - blobs[i].position;
vertValues.v7 += metaballFalloffFunction(blobs[i].factor, dist);
}
return vertValues;
}
//
// computer shader kernel
//
[numthreads(8, 8, 8)]
void Calculate(uint3 id : SV_DispatchThreadID) {
int pos = id.x + xCubes * (id.y + yCubes * id.z);
// find scalar values of a field on this position
Values vertValues = evaluateFieldFunction(pos);
// partial marching cubes algorithm
int cubeIndex = findIndex(vertValues);
int pattern = vertTable[cubeIndex];
float3 verticesArr[12] = {
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0),
float3(0, 0, 0)
};
for (int vert = 0; vert < 12; vert++) {
if ((pattern & 1 << vert) != 0) {
int vertIndex0 = verticesAtEndsOfVerts[(int)(vert * 2)];
int vertIndex1 = verticesAtEndsOfVerts[(int)(vert * 2 + 1)];
float vertValue0 = getValueAtVert(vertValues, vertIndex0);
float vertValue1 = getValueAtVert(vertValues, vertIndex1);
float3 vertPosition0 = cubes[pos].centerPos + vertMap[vertIndex0];
float3 vertPosition1 = cubes[pos].centerPos + vertMap[vertIndex1];
float delta = (threshold - vertValue0) / (vertValue1 - vertValue0);
// linear interpolate cubes for smooth surface
verticesArr[vert] = vertPosition0 + delta * (vertPosition1 - vertPosition0);
}
}
// save processed data to vertices buffer
vertices[pos].index = cubeIndex;
vertices[pos].v0 = verticesArr[0];
vertices[pos].v1 = verticesArr[1];
vertices[pos].v2 = verticesArr[2];
vertices[pos].v3 = verticesArr[3];
vertices[pos].v4 = verticesArr[4];
vertices[pos].v5 = verticesArr[5];
vertices[pos].v6 = verticesArr[6];
vertices[pos].v7 = verticesArr[7];
vertices[pos].v8 = verticesArr[8];
vertices[pos].v9 = verticesArr[9];
vertices[pos].v10 = verticesArr[10];
vertices[pos].v11 = verticesArr[11];
}