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Abstract 

Response inhibition—the ability to stop responses that are no longer appropriate—
is frequently studied with the stop-signal paradigm. In the stop-signal paradigm, 
participants perform a choice response time task that is occasionally interrupted by 
a stop signal. The stop signal prompts participants to withhold their response on 
that trial. Performance in the stop-signal paradigm is typically formalized as horse 
race between a go and a stop process. If the go process wins the race, the response 
in executed; it the stop process wins the race, the response is inhibited. The stop-
signal paradigm owes its popularity to the underlying horse-race model that 
enables researchers to estimate the latency of the unobservable stop response. In 
this chapter, we present a theoretical review of the stop-signal paradigm and the 
corresponding horse-race model. First we focus on the standard independent 
horse-race model and discuss the most important measures of inhibitory control in 
the stop-signal paradigm. We then describe the latest developments in the model-
based analysis of stop-signal data. We conclude the chapter with recommendations 
on how to run stop-signal experiments and how to report and interpret the results 
of stop-signal studies. 
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1. Introduction  
Response inhibition is considered to be a key component of executive 

control (e.g., Aron, Robbins, & Poldrack, 2014; Logan, 1994; Miyake et al., 2000; 
Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004; Verbruggen, 
McLaren, & Chambers, 2014). The concept refers to the ability to suppress 
responses that are no longer required or inappropriate, which supports flexible and 
goal-directed behavior in ever-changing environments. In everyday life, there are 
many examples of the importance of response inhibition, such as stopping yourself 
from crossing a street when a car comes around the corner without noticing you, 
or withholding your reflex to grasp a hot pan falling from the stove. Furthermore, 
clinical research suggests that impairments in response inhibition may contribute 
to the development of a range of psychopathological and impulse-control 
disorders, such as attention deficit/hyperactivity disorder (ADHD), obsessive-
compulsive disorder, substance abuse, pathological gambling, and eating disorders 
(e.g., Bechara, Noel, & Crone, 2006; Crews & Boettiger, 2009; de Wit, 2009;        
Fernie et al., 2013; Garavan & Stout, 2005; Nigg, 2001; Noël, Brevers, & Bechara, 
2013). Response inhibition efficiency also correlates with the treatment outcome 
in people with such disorders (e.g., Nederkoorn, Jansen, Mulkens, & Jansen, 
2007). Thus, response inhibition is crucial for flexible, adaptive, and goal-directed 
behavior.  

A paradigm that is most suitable for the investigation of response inhibition 
in a laboratory setting is the stop-signal paradigm (Lappin & Eriksen, 1966; Logan 
& Cowan, 1984; Vince, 1948; for reviews, see Logan, 1994; Verbruggen & 
Logan, 2008b). In the standard stop-signal paradigm, participants usually perform 
a choice response time (RT) task (i.e., the go task; also referred to as the primary 
task), such as responding to the direction of an arrow (e.g., press a left key for a 
left-pointing arrow and a right key for a right-pointing arrow). Occasionally, the 
go stimulus is followed by a stop signal (e.g., an auditory tone or an additional 
visual stimulus) after a variable delay (stop-signal-delay; SSD), instructing 
subjects to withhold their response. Figure 1 depicts an example of the trial course 
of a stop-signal experiment. Typically, participants can inhibit their response when 
the stop signal is presented close to the moment of go stimulus presentation, but 
they cannot inhibit their response when the stop signal is presented close to the 
moment of response execution. 

 



 

   
 
 
 
 
 
 
 
 
 

 

Figure 1. Depiction of a trial course in the stop-signal paradigm. In the go task, subjects 
respond to the direction of an arrow (the go stimulus; a “left arrow” requires a left response and a 
“right arrow” requires a right response). On a minority of the trials, the go stimulus is followed by 
an auditory stop signal after a variable stop-signal delay, instructing participants to withhold their 
response. Participants can successfully inhibit their response when the stop signal is presented 
close to the moment of go stimulus presentation, but they cannot inhibit their response when the 
stop signal is presented close to the moment of response execution. 

 
The stop-signal paradigm is popular because it allows researchers to 

estimate the covert latency of the stop process: the stop-signal reaction time 
(SSRT). For example, SSRT has been used to explore the cognitive and neural 
mechanisms of response inhibition (e.g., Aron & Poldrack, 2006; Debey, De 
Schryver, Logan, Suchotzki, & Verschuere, 2015; Hanes, Patterson, & Schall, 
1998; Logan & Cowan, 1984; van den Wildenberg, van der Molen, & Logan, 
2002; Verbruggen, Stevens, & Chambers, 2014), the development and decline of 
inhibitory capacities across the life span (e.g., Chevalier, Chatham, & Munakata, 
2014; Huizinga, Dolan, & van der Molen, 2006; Williams, Ponesse, Schachar, 
Logan, & Tannock, 1999), and correlations between individual differences in 
stopping and behaviors such as substance abuse, risk taking, and more generally, 
control of impulses and urges (e.g., Ersche et al., 2012; Schachar & Logan, 1990; 
Whelan et al., 2012). Furthermore, stop-signal studies have shown how response 
inhibition can be enhanced or impaired by a variety of factors, including 
motivational incentives, drugs, emotional stimuli, or neurological disorders (e.g., 
Aron, Fletcher, Bullmore, Sahaakian, & Robbins, 2003; Boehler, Schevernels, 



 

Hopf, Stoppel, & Krebs, 2014; Fillmore, Rush, & Hays, 2002; Mulvihill, Skilling, 
& Vogel-Sprott, 1997; Tannock, Schachar, Carr, & Logan, 1989; Tannock, 
Schachar, & Logan, 1995; Verbruggen & De Houwer, 2007). These are just a few 
examples; for elaborate reviews, see Bari and Robbins (2013), Chambers, Garavan 
and Bellgrove (2009), Logan (1994), and Verbruggen and Logan (2008b). 

SSRT can be estimated because performance in the stop-signal task can be 
formalized as an independent horse race between a go process, triggered by the 
presentation of the go stimulus, and a stop process, triggered by the presentation of 
the stop signal (Logan & Cowan, 1984; Logan, Van Zandt, Verbruggen, & 
Wagenmakers, 2014). When the stop process finishes before the go process, 
response inhibition is successful and no response is emitted; when the go process 
finishes before the stop process, response inhibition is unsuccessful and the 
response is incorrectly emitted.  

The role of inhibitory processes in many executive control paradigms is 
debated (see e.g., MacLeod, Dodd, Sheard, Wilson, & Bibi, 2003), but most 
researchers have agreed that some kind of inhibition is involved in deliberately 
stopping a prepared motor response. The idea that responses are actively 
suppressed on stop-signal trials has received support from brain stimulation 
studies. These studies indicate that intracortical inhibitory circuits in primary 
motor cortex are recruited on stop-signal trials (e.g., Coxon, Stinear, & Byblow, 
2006; van den Wildenberg et al., 2010). Furthermore, brain stimulation studies 
suggest that both task-relevant and irrelevant muscles are suppressed on stop-
signal trials, indicating that stopping can have global effects on the motor system 
(Badry et al., 2009; Greenhouse, Oldenkamp, & Aron, 2011; Majid, Cai, George, 
Verbruggen, & Aron, 2012). 

In this chapter, we present a theoretical review of the independent horse-
race model and related models, and we discuss the most important measures of 
inhibitory control in the stop-signal paradigm. Up until Section 3.2, we focus on 
the standard independent horse-race model and related SSRT estimation 
techniques, and largely follow the structure and content of previous reviews by 
Logan (1994), Verbruggen and Logan (2008b), and Verbruggen and Logan 
(2009a). From Section 3.3 onwards, we describe the latest developments in the 
model-based analysis of stop-signal data, focusing on the estimation of SSRT 
distributions, process models of response inhibition, and variants of the stop-signal 
paradigm. We conclude the chapter with recommendations on how to run stop-
signal experiments, and how to report and interpret findings from stop-signal 
studies.  

 

2. Independent Horse-Race Model of 



 

Response Inhibition 
To formally account for performance in the stop-signal paradigm, Logan 

(1981) and Logan and Cowan (1984) formalized response inhibition as a horse 
race between two independent processes: a go process and a stop process. In this 
section, we briefly describe the precursors of the horse-race idea and then present 
the mathematical details of the independent horse-race model.  

For simplicity, we first assume that SSRT is constant, but later we 
introduce the complete horse-race model that treats both go RTs and SSRTs as 
random variables. We assume throughout the chapter that the go process is 
entirely under the voluntary control of the participants, without a ballistic 
component that must run to completion once it has been launched, and therefore, 
cannot be inhibited. Although this is likely to be an unrealistic assumption, the 
contribution of ballistic processing to go RTs has been shown to be very brief and 
happen only very late in responding (e.g., de Jong, Coles, Logan, & Gratton, 1990; 
Logan & Cowan, 1984; McGarry & Franks, 1997; McGarry, Inglis, & Franks, 
2000; Osman, Kornblum, & Meyer, 1986). Furthermore, we assume that the 
distribution of the stop signals is random and that stimuli in the go task are not 
consistently associated with stopping. (Note that this assumption is met in most 
stop-signal studies.) When the stimulus-stop mapping is consistent (e.g., when left 
arrows are always followed by a stop signal), participants can learn stimulus-stop 
associations (Verbruggen & Logan, 2008a; for a review, see Verbruggen, Best, 
Bowditch, Stevens, & McLaren, 2014). The retrieval of such associations will 
interfere with going and can influence SSRT estimates because responding may be 
suppressed before the stop signal is presented.  

 

2.1 Early Horse-Race Models  
The idea that response inhibition can be conceptualized as a race between 

two competing processes has been around well before Logan and Cowan’s (1984) 
formal description of the horse-race model. The horse-race idea was qualitatively 
present in the work of Vince (1948) who observed that participants were unable to 
stop their responses to the go stimulus when the stop-signal delay was longer than 
50 ms. Lappin and Eriksen (1966) used a visual stop-signal task and found that 
participant slowed their RT to the go stimulus in order to keep response rate 
constant across the stop-signal delays.  

Although these findings suggest that participants’ ability to stop is 
determined by the relative finishing times of their go and stop process, the 
formalization of response inhibition as a horse race had to await the work of 



 

Ollman (1973), who applied the stop-signal procedure to a response timing task, in 
which participants were asked to produce a response of a given duration. Ollman 
proposed that participants perform the stop-signal task by setting a subjective 
deadline for the go response. If the stop signal is detected before the deadline, the 
go response is successfully inhibited; if the stop signal is detected after the 
deadline, the go response is incorrectly emitted. Ollman’s model assumed that the 
finishing times of the go and the stop process follow a normal and exponential 
distribution, respectively. Although the model with its specific parametric 
assumptions was not supported by empirical data, Ollman’s work paved the way 
for the quantitative description of response inhibition as a “horse race” between a 
go and a stop process, an idea that has dominated the literature even since. 

 

2.2 Independent Horse-Race Model: The Basics 
As mentioned above, the independent horse-race model (Logan, 1981; 

Logan & Cowan, 1984) assumes that response inhibition can be conceptualized as 
a race between two independent processes: a go process that is initiated by the go 
stimulus, and a stop process that is triggered by the stop signal. If the stop process 
finishes before the go process, the response is successfully inhibited; if the go 
process finishes before the go process, the go response is erroneously emitted. 
Thus, the horse-race model posits that the outcome of response inhibition depends 
on the relative finishing times of the go and the stop process.  

Logan and Cowan’s (1984) conceptualization of response inhibition as a 
race between two competing processes is consistent with Ollman’s (1973) model. 
Their horse-race model, however, is more general: It makes predictions about the 
interplay between RTs and response rate that do not require specifying the 
functional form of the go RT and SSRT distribution. The generality of the model 
and the precise mathematical description of the race allowed Logan and Cowan to 
develop distribution-free measures of the efficiency and the latency of the stop 
process (i.e., SSRT). This development has proved to be a milestone in the 
quantitative assessment of response inhibition in various scientific disciplines 
within as well as outside of psychology. For example, SSRT has been used in 
pharmacological, psychiatry, and neuroscience research (see the Supplementary 
Information of Verbruggen, Chambers, & Logan, 2013, for an overview of the 
different research areas).  

The generality of the horse-race model, however, comes at a price. The 
model does not specify the underlying processes that produce behavior in the stop-
signal paradigm. Thus, the horse-race model can describe but cannot explain 
differences in inhibition performance between individuals, populations or 
experimental conditions. Although the horse-race model cannot give direct 



 

insights into the process of stopping (cf. Section 4), it can be used to test 
hypotheses about the nature of response inhibition if predictions are formulated in 
terms of the accuracy and the speed of the stop process and in terms of factors that 
affect these. In this respect, the horse-race model is similar to signal detection 
theory, a popular and very general model for analyzing decision making processes 
in the presence of uncertainty (Green & Swets, 1966; MacMillan & Creelman, 
2008)  

 

2.3 Independent Horse-Race Model with 
Constant SSRT 

In its most simple form, the independent horse-race model assumes that go 
RT is a random variable and, conditional on stop-signal delay, SSRT is constant. 
Although the assumption of constant SSRT is implausible, ignoring variability in 
SSRT simplifies the derivation of the model.  

Panel A in Figure 2 shows a graphical representation of the model. The go 
RT distribution represents the distribution of the finishing times of the go process. 
If ܶ is a random variable representing the finishing times of the go process with 
continuous probability density function ݂(ݐ) for ݐ ≥ 0, then the mean and 
variance of the go RT distribution equal: 

തܶ =  න ݐ ݂(ݐ)݀ݐ
ஶ


 (1) 

 and 
ଶߪ =  න −ݐ) തܶ)ଶ ݂(ݐ)݀ݐ,

ஶ


 (2) 

 
respectively. The vertical dotted line in Figure 2 represents the unobservable 
response to the stop signal. On a given stop-signal delay, the white area to the 
right of the vertical line represents go RTs that are too slow to win the race; the 
white area under the curve therefore represents the probability of inhibiting the go 
response– ூܲ௧(ݐௌௌ). The gray area to the left of the vertical line represents go 
RTs that are fast enough to win the race; the gray area under the curve therefore 
represents response rate,  i.e., the probability of incorrectly responding to the go 
stimulus– ோܲ௦ௗ(ݐௌௌ). 

Panel B in Figure 2 illustrates how performance in the stop-signal paradigm 
is determined by the relative finishing times of the go and the stop process. The 
model assumes that the go response is successfully inhibited if ܶ > ௦௧ݐ) +



 

 ,ௌௌ are constants representing SSRT and stop-signal delayݐ ௦௧ andݐ ௌௌ), whereݐ
respectively. Stop-signal trials resulting in successful inhibitions are called signal-
inhibit trials. In contrast, the go response is incorrectly emitted if ܶ < ௦௧ݐ) +
-ௌௌ). Stop-signal trials resulting in erroneous go responses are called signalݐ
respond trials, and the corresponding RTs are called signal-respond RTs. 

 

Figure 2. Graphical representation of the independent horse-race model with constant stop-signal 
reaction time. Panel A shows that response rate (i.e., Pୖୣୱ୮୭୬ୢ(tୗୗୈ)) and the probability of inhibition 
(i.e., P୍୬୦୧ୠ୧୲(tୗୗୈ)) are determined by the stop-signal delay (SSD), the stop-signal reaction time (SSRT), 
and the go RT distribution. Panel B shows that the go response is incorrectly emitted if T୭ < (tୱ୲୭୮ +
tୗୗୈ), resulting in a signal-respond trial. In contrast, the go response in successfully inhibited if T୭ >
(tୱ୲୭୮ + tୗୗୈ), resulting in a signal-inhibit trial. 

 
The model predicts that the probability of responding on a given stop-signal 

delay is given by: 

ோܲ௦ௗ(ݐௌௌ) =  න ݂(ݐ) ݀ݐ
௧ೞା௧ೄೄವ


. 

 
(3) 

The mean of the signal-respond RTs is given by: 
 



 

തܶௌோ(ݐௌௌ) =  1
ோܲ௦ௗ(ݐௌௌ) න ݐ ݂(ݐ)݀ݐ.

௧ೞା௧ೄೄವ


 

 
(4) 

It follows from Equation 4 that mean signal-respond RT is necessarily faster than 
mean go RT. The model also predicts that mean signal-respond RT increases with 
increasing stop-signal delay and approaches mean go RT in the limit. The 
relationship between mean signal-respond RT and mean go RT is also evident 
from Panel A in Figure 2, where the gray area represents the signal-respond RT 
distribution. The mean of the signal-respond RTs is necessarily faster than the 
mean of the go RTs because mean signal–respond RT only represents the mean of 
those responses that were fast enough to finish before the stop signal (i.e., its 
calculation does not include the slow tail of the go RT distribution), whereas mean 
go RT represents the mean of all go responses. With increasing stop-signal delay, 
the stop response cuts off more of the go RT distribution (i.e., the vertical line 
shifts to the right), resulting in an increase in the gray area and therefore an 
increase in mean signal-respond RT (Logan & Cowan, 1984). 
 

2.3.1 Inhibition Functions 
According to the independent horse-race model, differences in inhibition 

performance can be entirely accounted for by the interplay between stop-signal 
delay, SSRT, and the location and variability of the go RT distribution. The 
interplay between these factors is often depicted using inhibition functions, 
functions that describe the relationship between stop-signal delay and response 
rate. These functions are important theoretically because they reflect the outcome 
of the race between the go process and the stop process (Logan and Cowan, 1984). 
They are important empirically because they reflect the ability to control 
responses; they can be used to compare inhibitory control in different groups, 
tasks, and conditions. 

The effect of stop-signal delay on the inhibition function is shown in Panel 
A of Figure 3. The horse-race model posits that stop-signal delay biases the 
finishing time of the stop process relative to the go process. As stop-signal delay 
increases, the stop process is triggered later and later. The stop response therefore 
cuts off an increasingly larger portion of the go RT distribution, resulting in an 
increase in response rate. Theoretically, if the stop signal occurs sufficiently early, 
participants can always inhibit the go response, resulting in a response rate of 0 for 
short stop-signal delays. If the stop signal occurs sufficiently late, participants can 
never inhibit the go response, resulting in a response rate of 1 for very long stop-
signal delays. As shown in the right panel, between these two extremes, response 
rate increases monotonically with increasing stop-signal delay.  



 

The effect of increasing go RT on the inhibition function is shown in Panel 
B of Figure 3. The go RT distribution is shifted to longer RTs (i.e., it is shifted to 
the right) relative to the go RT distribution in Panel A. For the same stop-signal 
delay and SSRT, the stop response cuts off a smaller portion of the go RT 
distribution, resulting in a decrease in response rate. As shown in the right panel, 
the resulting inhibition function is shifted to the right relative to the inhibition 
function in Panel A (i.e., dashed line). This prediction of the race model resonates 
with the empirical finding that participants can slow their go RTs in order to keep 
response rate constant across the stop-signal delays (Lappin & Eriksen, 1966).  

The effect go RT variability on the inhibition function is shown in Panel C 
of Figure 3. The variance of the go RT distribution is larger relative to the go RT 
distribution in Panel A. For the same stop-signal delay and SSRT, a smaller 
portion of the go RT distribution falls between any two consecutive stop-signal 
delays. As shown in the right panel, the resulting inhibition function is flatter than 
the inhibition function in Panel A. 

The effect of SSRT on the inhibition function is show in Panel D of Figure 
3. SSRT is progressively increased relative to SSRT in Panel A. For the same 
stop-signal delay and go RT distribution, the stop response cuts off a larger portion 
of the go RT distribution, resulting in an increase in response rate. As shown in the 
right panel, the resulting inhibition function is shifted to the left relative to the 
inhibition function in Panel A. 

 
2.3.2 Diagnosing Deficient Inhibition: Aligning Inhibition 
Functions 

The goal of the quantitative analysis of stop-signal data is to detect 
differences in inhibition performance between populations, strategies, tasks, or 
experimental manipulations. Deficiencies in response inhibition may result from a 
slower or more variable stop process, or from a stop process that is not triggered 
reliably by the stop signal. All these possibilities impair participant’s ability to 
stop and result in an increased response rate. However, an increase in response 
rate does not necessarily imply decreased inhibitory ability; for instance, two 
participants with similar inhibitory ability can differ in response rate as a result of 
differences in the speed of their go process.  

 
 



 

 
Figure 3. The effect of stop-signal delay (Panel A), go RT (Panel B), go RT variability (Panel C), 
and stop-signal reaction time (Panel D) on the inhibition function. SSD = stop-signal delay, 
SSRT= stop-signal reaction time.  

 



 

When response rate is plotted against stop-signal delay, the horse-race 
model predicts that an increase in mean go RT shifts the inhibition function to the 
right (Figure 3, Panel B), an increase in go RT variability (Panel C) decreases the 
slope of the inhibition function, and an increase in SSRT shifts the inhibition 
function to the left (Panel D). Therefore inhibitory deficits can be diagnosed by 
testing whether inhibition functions in the different populations or conditions can 
be aligned by accounting for differences in mean go RT, differences in go RT 
variability, and differences in SSRT. Note that the tests are based on visual 
evaluation of the inhibition functions and not on quantitative assessment of the 
alignment. Successful alignment indicates that the same inhibitory process applies 
to all poulations or conditions, albeit with differences in go RT and/or differences 
in SSRT (Logan, 1994; Logan & Cowan, 1984). 

First, if inhibition functions can be aligned by plotting response rate against തܶ −  ௌௌ, then differences response rate between groups or conditions are onlyݐ
due to differences in mean go RT (e.g., Logan, Cowan, & Davis, 1984; Schachar 
& Logan, 1990). Note that the same reasoning does not apply to go RT variability; 
the horse-race model does not predict that accounting for go RT variability by 
plotting response rate against ( തܶ − (ௌௌݐ ൗߪ  should bring the inhibition 
functions into alignment (e.g., Logan et al., 1984). Second, if inhibition functions 
can be aligned by plotting response rate against ( തܶ − ௌௌݐ − (௦௧ݐ ൗߪ  (the so-
called ZRFT transformation), then differences are due to differences in go 
performance as well as differences in SSRT (e.g., Logan & Cowan, 1984; Logan 
et al., 1984; Schachar & Logan, 1990; van der Schoot, Licht, Horsley, & Sergeant, 
2000). Thus, differences in response rate only indicate differences in response 
inhibition ability if accounting for SSRT is necessary to bring the inhibition 
functions into alignment.  

If inhibition functions cannot be aligned by these transformations, the 
independent horse-race model with constant SSRT cannot account for the data of 
one or more populations or conditions (Logan & Cowan, 1984). Misalignment is 
often manifested in differences in the slope of the transformed inhibition 
functions, and may indicate differences in the variability of the stop process or 
differences in the ability to trigger the inhibition mechanism (Badcock, Michie, 
Johnson, & Combrinck, 2002; Schachar & Logan, 1990; Tannock et al., 1995). 
Theoretically, estimates of SSRT variability from the complete horse-race model 
(see Section 3.2 and 3.3) and estimates of the probability of trigger failures (see 
Section 7.1.1) may be used to disentangle the effects of SSRT variability and 
triggering deficiencies on the slope of ZRFT transformed inhibition functions. 
Band, van der Molen, & Logan (2003) argued, however, that differences in ZRFT 
transformed inhibition functions cannot be uniquely attributed to differences in the 
variability of the stop process or differences in trigger failures because the ZRFT 
transformation fails to account sufficiently for go RT variability. Therefore, 



 

differences in inhibition functions should be interpreted carefully because it is not 
always entirely clear what factors are causing the misalignment. 

 

2.4 The Complete Independent Horse-Race 
Model 

The complete independent horse-race model treats go RT, SSRT, and the 
time required for ballistic processes as independent random variables. For the 
formal derivation of the complete horse-race model the reader is referred to Logan 
and Cowan (1984). Here we reiterate their main results without accounting for the 
ballistic component, and set the stage for introducing approaches to SSRT 
estimation that do not rely on the over-simplified assumption of constant SSRT. 

 
 
 

Figure 4. Graphical representation of the complete horse-race model. SSD = stop-signal delay; 
SSRT = stop-signal reaction time. 

 
The complete horse-race model assumes that both go RT and SSRT are 

independent random variables. As shown in Figure 4, the underlying horse-race 
idea remains the same, but SSRT—just like go RT—can now take on a different 
value on every stop-signal trial. The model posits that the go response is 
successfully inhibited (resulting in a signal-inhibit trial) if ܶ > ( ௦ܶ௧ +  ,(ௌௌݐ
where ܶ and ௦ܶ௧ are independent random variables representing the finishing 



 

time of the go and the stop process, respectively, and ݐௌௌ  is a constant 
representing stop-signal delay. In contrast, the go response is incorrectly emitted 
(resulting in a signal-respond trial) if ܶ < ( ௦ܶ௧ +  .(ௌௌݐ

The model predicts that the probability of responding on a given stop-signal 
delay is given by: 

ோܲ௦ௗ (ௌௌݐ)  =  න ݂(ݐ) ቀ1 − ݐ)௦௧ܨ − ௌௌ)ቁݐ ,ݐ݀
ஶ


 

 
(5) 

where ܨ௦௧(ݐ −  ௌௌ) is the cumulative distribution function of the finishing timesݐ
of the stop process at ݐௌௌ. It follows from Equation 5 that increasing stop-signal 
delay increases the probability of responding by decreasing ܨ௦௧(ݐ −  ௌௌ). Theݐ
distribution of signal-respond RTs on a given stop-signal delay is given by: 
 

ௌ݂ோ(ݐ|ݐௌௌ) =  ݂(ݐ) 1 − ݐ)௦௧ܨ − (ௌௌݐ
 ோܲ௦ௗ(ݐௌௌ) . 

 
(6) 

The complete horse-race model predicts that the signal-respond RT distribution 
and the go RT distribution share a common lower bound. At higher quantiles, 
however, the cumulative distribution functions of the two distributions diverge; 
the shorter the stop-signal delay, the steeper the rise of the cumulative distribution 
function of the signal-respond RTs. The common lower bound also implies that 
mean signal-respond RT is shorter than mean go RT (Colonius, Ozyurt, & Arndt, 
2001; Osman et al., 1986).  
 

2.4.1 Inhibition Functions 
According to the complete horse-race model, varying stop-signal delay in 

Equation 5 will produce the inhibition function. Similar to the horse-race model 
with constant SSRT, the complete model predicts that increasing mean go RT 
decreases the probability that the go process wins the race and results in a 
rightward shift in the inhibition function. In contrast, increasing mean SSRT 
decreases the probability that the stop process wins the race and results in a 
leftward shift in the inhibition function. Increasing go RT or SSRT variability 
influences the slope of the inhibition function (Logan & Cowan, 1984). 

Logan and Cowan (1984) showed that treating the inhibition function as a 
cumulative distribution allows one to express its mean and variance in terms of the 
mean and variance of the go RTs and SSRTs. In particular, the mean of the 
inhibition function equals the difference between mean go RT and mean SSRT: 



 

തܶௌௌ =  തܶ − തܶ௦௧. 
 (7) 
  

The variance of the inhibition function equals the sum of the variances of the go 
RTs and SSRTs: 

ௌௌଶߪ = ଶߪ  + ௦௧ଶߪ . (8) 
  

As we show in Section 3.2, Equation 7 suggests an easy to use method to 
estimate mean SSRT that does not rely on the unlikely assumption of constant 
stopping latencies. The complete horse-race model is not limited to estimating the 
central tendency of the finishing time distribution of the stop process; the model 
enables the estimation of limits on the moments of the distribution of the stop 
process and the ballistic component. However, non-parametric estimation of 
moments of SSRT distributions higher than the first degree requires data quality 
that is often unavailable in typical stop-signal studies (Logan, 1994; Matzke, 
Dolan, Logan, Brown, & Wagenmakers, 2013) 

 

2.5 Independence Assumptions 
In order to simplify the derivation of the horse-race model, Logan and 

Cowan (1984) assumed that the go process and the stop process are independent of 
one another. The independence assumption allows one to treat the go RT 
distribution on go trials (i.e., trials without stop signal) as the underlying 
distribution of go RTs on stop-signal trials. The horse-race model relies on two 
types of independence: stochastic independence and context independence. 
According to the stochastic independence assumption, on a given trial, the 
finishing time of the go process is independent of the finishing time of the stop 
process: for all ݐ and ݐ௦௧,  

 
ܲ൫ ܶ < ݐ   ∩  ௦ܶ௧ < ௦௧൯ݐ  = ܲ൫ ܶ < ൯ݐ  × ܲ൫ ௦ܶ௧ <  .௦௧൯ݐ 

 (9) 
 

According to the context independence (or signal independence) assumption, the 
distribution of the finishing times of the go process is the same on go trials and 
stop-signal trials: for all ݐ and ݐௌௌ, 
 

ܲ൫ ܶ < ൯ݐ = ܲ൫ ܶ <  ௌௌ൯. (10)ݐหݐ
  



 

Importantly, the horse-race model does not assume functional 
independence between the go and the stop process. Functional independence 
means that factors that influence the finishing time distribution of the go process 
do not influence the finishing time distribution of the stop process, and vice versa. 
In fact, several neuropsychological and behavioral studies have shown that the go 
and the stop process are not functionally independent, for example, when the go 
task requires response selection (Logan et al., 1984; Szmalec, Demanet, 
Vandierendonck, & Verbruggen, 2009) or Stroop-like interference control 
(Chambers et al., 2007; Kramer, Humphrey, Larish, Logan, & Strayer, 1994; 
Ridderinkhof, Band, & Logan, 1999; Verbruggen, Liefooghe, & Vandierendonck, 
2004, 2006). In contrast, other studies have provided evidence for the functional 
independence of the go and the stop process, for instance, in situations where the 
primary task involves interference due to task switching or dual-task interference 
due to multiple response alternatives (Logan et al., 2014; Verbruggen, Liefooghe, 
Szmalec, & Vandierendonck, 2005). 

 

3. Stop-Signal Reaction Times 
The stop-signal paradigm owes its popularity to the underlying horse-race 

model that enables researchers to estimate the latency of the stop process. SSRTs 
play a pivotal role in diagnosing deficient response inhibition in clinical 
populations and in assessing participants’ stopping ability across different tasks 
and experimental conditions. Various methods are available to estimate SSRTs. 
The most popular methods focus exclusively on obtaining summary measures of 
the latency of stopping (Section 3.1), but the complete horse-race model also 
allows for the estimation of SSRT variability (Section 3.2). More recent methods  
provide researchers with the possibility to estimate the entire distribution of 
SSRTs (Section 3.3), to estimate the parameters of the underlying stop (and go) 
process (Section 4), and to quantify the relative contribution of trigger failures to 
stop-signal performance (Section 7.1.1).  

 

3.1. Estimating Summary Measures of SSRT 
Various methods are available to estimate summary measures, such as the 

mean, of the latency of the stop response. The methods differ in whether they treat 
SSRT as a constant or as a random variable. Which estimation method is most 
suitable also depends on how stop-signal delay is set. There are two procedures for 
setting stop-signal delay: (1) using some number of fixed stop-signal delays (i.e., 



 

the fixed-SSDs procedure) or (2) adjusting stop-signal delays dynamically (i.e., 
the tracking procedure). The most common tracking procedure involves adjusting 
stop-signal delay after every trial (i.e., the one-up/one down procedure; see Logan, 
Schachar, & Tannock, 1997; Verbruggen & Logan, 2009a; Verbruggen et al., 
2013): At the beginning of the experiment, stop-signal delay is set to a specific 
value (e.g., 250 ms) and is then constantly adjusted after stop-signal trials, 
depending on the outcome of the race. When inhibition is successful, stop-signal 
delay increases (e.g., by 50 ms); when inhibition is unsuccessful, stop-signal delay 
decreases (e.g., by 50 ms). This one-up/one-down tracking procedure typically 
results in ோܲ௦ௗ ≈ 0.50, which means that the race between the stop process 
and the go process is tied.  

 
3.1.1 Fixed Stop-Signal Delays 

The integration method is the most popular method when fixed stop-signal 
delays are used (Logan & Cowan, 1984). The integration method assumes that 
SSRT is constant and allows for the estimation of SSRT for each stop-signal delay 
separately. For any given stop-signal delay, the integration method involves 
finding the value of ݐ௦௧ in the upper limit of the integral in Equation 3 for which 
the area of the go RT distribution equals ோܲ௦ௗ(ݐௌௌ). In practice, go RTs are 
rank ordered and the ݊௧go RT is selected, where ݊ is the number of go RTs 
multiplied by ோܲ௦ௗ(ݐௌௌ). Stop-signal delay is then subtracted to arrive at an 
estimate of SSRT.  

SSRTs estimated with the integration method decrease with increasing 
stop-signal delay (Logan & Burkell, 1986; Logan & Cowan, 1984). Estimates 
from different stop-signal delays are therefore averaged to arrive at a single SSRT 
estimate for each participant. Note that the decrease in estimated SSRT as a 
function of stop-signal delay is not necessarily at odds with the independence 
assumption, but can be explained by variability in SSRT. Suppose that SSRTs 
have a constant mean and nonzero variance. At short stop-signal delays, a large 
portion of the SSRT distribution will produce successful response inhibition; 
estimated SSRT therefore closely approximates the mean of the entire SSRT 
distribution. At long stop-signal delays, only a small portion of the SSRT 
distribution will produce successful inhibition; estimated SSRT is therefore lower 
than the mean of the entire SSRT distribution (de Jong et al., 1990; Logan & 
Burkell, 1986; Logan & Cowan, 1984). 

Contrary to the integration method, the mean method assumes that SSRT is 
a random variable. As shown in Equation 7, mean SSRT can be computed by 
subtracting the mean of the inhibition function from mean go RT (Logan & 
Cowan, 1984). In the unlikely scenario that the observed inhibition function 



 

ranges from 0 to 1, the mean of the inhibition function can be computed using the 
values of the ݅, ݅ = 2, … , ݊, stop-signal delays and the corresponding response 
rates: 

തܶௌௌ =   ௌௌݐ



ୀଶ
ቀ ோܲ௦ௗ൫ݐௌௌ൯ − ோܲ௦ௗ൫ݐௌௌషభ൯ቁ. (11) 

  
In case of truncated inhibition functions, the right side of Equation 11 must be 
divided by ( ோܲ௦ௗೌೣ −  ோܲ௦ௗ).  However, truncated inhibition functions 
lose information about the tails of the distribution, which may affect estimates of 
the mean, particularly when the distribution is skewed. 

If the inhibition function is symmetrical, the mean of the inhibition function 
in Equation 7 may be replaced by the median (Logan & Cowan, 1984). The use of 
the median is motivated by its ease of computation: The median of the inhibition 
function is the stop-signal delay where ோܲ௦ௗ = 0.50. In principle, two stop-
signal delays are sufficient to estimate the median of the inhibition function, one 
with ோܲ௦ௗ < 0.50 and one with ோܲ௦ௗ > 0.50. The median can be then 
obtained by interpolation. If one is willing to assume a parametric form for the 
inhibition function, the median may be also obtained by fitting a Weibull or 
logistic function to the observed inhibition function (Chambers et al., 2006; Hanes 
& Schall, 1995). Note that the Weibull function is not always symmetric, in which 
case the median cannot replace the mean. A related method entails subtracting the 
median of the inhibition function from the median of the go RTs. This method is 
not justified by the mathematics of the race model unless the mean equals the 
median. As opposed to the integration method, the mean and the median methods 
do not provide SSRT estimates for each stop-signal delay separately. 

The integration method and the mean method both produce reliable SSRT 
estimates in combination with fixed stop-signal delays, provided that the mean of 
the inhibition function (Equation 11) is estimated accurately. The use of fixed 
stop-signal delays, however, requires a relatively large number of observations. 
For instance, Band et al. (2003) advised researchers to present participants with at 
least 900 go trials and 60 stop-signal trials on five different stop-signal delays to 
obtain reliable estimates using the integration method.  

 
3.1.2 Tracking Procedure 

The mean method is the most popular method for estimating SSRTs when 
the tracking procedure is used to set stop-signal delays (Logan & Cowan, 1984; 
Logan et al., 1997). When tracking results in an overall ோܲ௦ௗ  of 0.50, the mean 
of the inhibition function is given by the mean of the stop-signal delays, provided 



 

that the inhibition function is symmetrical. Once the mean of the inhibition 
function is computed, mean SSRT can be obtained using Equation 7. Due to its 
simplicity, the mean method has become the dominant method for estimating 
SSRTs (Verbruggen et al., 2013) and has been implemented in the popular STOP-
IT software (Verbruggen, Logan, & Stevens, 2008).  

The integration method in combination with tracking entails selecting the ݊௧ go RT, where ݊ equals the number of RTs in the go RT distribution multiplied 
by the overall ோܲ௦ௗ . SSRT is then obtained by subtracting mean stop-signal 
delay from the ݊௧ go RT (e.g., Ridderinkhof et al., 1999; Verbruggen et al., 2004; 
Verbruggen, Stevens et al., 2014). The median method entails subtracting mean 
stop-signal delay from the median of the go RTs (e.g., Aron & Poldrack, 2006), 
however there is no justification for the median method in the race model. The 
race model makes predictions about mean RT and the mean of the inhibition 
function (Logan & Cowan, 1984). The relationship in Equation 7 does not hold for 
medians.  

Methods relying on tracking require fewer observations for accurate and 
reliable SSRT estimation than methods that use fixed stop-signal delays (Band et 
al., 2003; Congdon et al., 2012; Williams et al., 1999). Researchers are 
recommended to present participants with approximately 120-150 go trials and 40-
50 stop-signal trials in combination with the tracking procedure (Verbruggen & 
Logan, 2009a). Verbruggen et al. (2013) showed, however, that the mean method 
overestimates SSRTs when go RTs are right-skewed or when participants 
gradually slow their responses over the course of the experiment. The integration 
method is less sensitive to the skewness of the go RT distribution, but it 
underestimates SSRTs in the presence of response slowing. The bias as a result of 
response slowing disappears when the integration method is applied to smaller 
blocks of trials as opposed to the entire experiment. Verbruggen and colleagues 
therefore recommended that researchers use the block-wise integration method to 
estimate SSRTs in combination with the tracking procedure. 

 

3.2 Estimating SSRT Variability 
Two populations or experimental groups may not only differ in mean 

SSRT, but may also differ in the variability of the latency of the stop response. 
Logan and Cowan’s (1984) treatment of the inhibition function as a cumulative 
distribution function provides a method for estimating SSRT variability. They 
observed that in symmetrical distributions the variance is proportional to the slope 
of the cumulative distribution function at the median. For instance, if we assume a 
normal distribution, the slope of the inhibition function at the median is given by: 



 

.ହܤ = 1
 .ߨௌௌ√2ߪ

 
(12) 

SSRT variability can be obtained by solving Equation 12 for ߪௌௌ and substituting 
the solution in Equation 8: 

௦௧ଶߪ =  ቆ 1
ቇߨ.ହ√2ܤ

ଶ
− ଶߪ  . 

 
(13) 

Note that the computation of SSRT variability using Equations 12 and 13 
assumes a particular parametric form for the inhibition function. This approach is 
therefore less general than Logan and Cowan’s (1984) non-parametric method for 
deriving the limit on the second moment of the SSRT distribution (see Section 
2.4.1). Moreover, reliability studies have shown that the parametric method 
overestimates the true variability in stopping latencies when inhibition functions 
are not symmetrical (Band et al., 2003). 
 

3.3 Estimating SSRT Distributions 
It is well-known in the response time modeling literature that relying on 

measures of central tendency, such as the mean, may miss important features of 
the data (e.g., Heathcote, Popiel, & Mewhort, 1991; Matzke & Wagenmakers, 
2009). Likewise, using only summary measures of SSRT may mask crucial 
aspects of stop-signal data and may lead to erroneous conclusions about response 
inhibition. For instance, two clinical populations may have the same mean SSRT, 
but their SSRT distributions may follow markedly different shapes. The 
development of methods that enable researchers to estimate the entire distribution 
of SSRTs has been an important advance in the stop-signal literature. 

 
3.3.1 Nonparametric Estimation 

Colonius (1990) and de Jong et al. (1990) developed a general approach for 
estimating the entire distribution of SSRTs. They showed that the survival 
distribution of SSRTs on a given stop-signal delay is given by (see also Equation 
6):   

1 − ݐ)௦௧ܨ − (ௌௌݐ =  ோܲ௦ௗ (ௌௌݐ)  ௌ݂ோ(ݐ|ݐௌௌ)
݂(ݐ) . 

 
(14) 

In line with the generality of the horse-race model, this method does not hinge on 
the specific parametric form assumed for the finishing times of the go and the stop 



 

process; all that is required are non-parametric density estimates for ݂(ݐ) and 
ௌ݂ோ(ݐ|ݐௌௌ). Once the survival distribution of SSRTs is obtained, the quantiles of 

the SSRT distribution can be easily derived.  
The non-parametric formulation, however, comes at a price: The Colonius 

– de Jong method requires an unrealistically large number of observations to 
accurately capture the tail of the SSRT distribution (Band et al., 2003; Logan, 
1994; Matzke et al., 2013a). As a result, the method has been never used with 
empirical data. 

 
3.3.2 Parametric Estimation 

Process models provide parametric ways of estimating SSRT distributions, 
which will be discussed below in Section 4. Matzke et al. (2013a) proposed a 
purely descriptive parametric method that allows researchers to estimate the entire 
distribution of SSRTs. By assuming a specific parametric form for the go RTs and 
SSRTs, this approach can provide accurate estimates of SSRT distributions even 
with relatively few observations. According to the parametric approach, the 
likelihood on the r =  1, … , R, signal-respond trials is given by: 

 (15) 
,ߠ)ௌோܮ ,ݐ|௦௧ߠ (௦௦ௗݐ = ෑ ݂൫ݐหߠ൯ ቀ1 ݐ௦௧൫ܨ − − ௦௧൯ቁߠ௦௦ௗหݐ ,

ோ

ୀଵ
 

 
 

where ݂(ݐ|ߠ) is the probability density function of the finishing time 
distribution of the go process with parameters ߠ and ܨ௦௧(ݐ −  ௦௧) is theߠ|௦௦ௗݐ
cumulative distribution function of the finishing time distribution of  the stop 
process at ݐ௦௦ௗ  with parameters ߠ௦௧. The likelihood on the i =  1, … , I, signal-
inhibit trials is given by: 

,ߠ)ூܮ ,ݐ|௦௧ߠ (௦௦ௗݐ = ෑ න ቀ1 − ൯ቁߠหݐ൫ܨ  ௦݂௧(ݐ−ݐ௦௦ௗ|ߠ௦௧)ஶ


ூ

ୀଵ
ݐ݀ , (16) 

  
where ܨ൫ݐหߠ൯ is the cumulative distribution function of the finishing time 
distribution of the go process with parameters ߠ and ௦݂௧(ݐ −  ௦௧) is theߠ|௦௦ௗݐ
probability density function of the finishing time distribution of the stop process at ݐ௦௦ௗ  with parameters ߠ௦௧. Note that the likelihood on signal-inhibit trials requires 
integrating over ݐ because RTs on signal inhibit-trials—the SSRTs—are by 
definition unobserved. 

Matzke et al.’s (2013a) parametric approach relies on the ex-Gaussian 
distribution to quantify the shape of the go RT and SSRT distribution (e.g., 



 

Heathcote et al., 1991; Matzke & Wagenmakers, 2009). The ex-Gaussian 
distribution is a three-parameter convolution of a Gaussian and an exponential 
distribution: the μ and σ parameters quantify the mean and the standard deviation 
of the Gaussian component and reflect the leading edge and mode of the 
distribution; τ quantifies the mean of the exponential component and reflects the 
slow tail of the distribution. The model postulates six ex-Gaussian parameters for 
each participant: three parameters for the go RT distribution, ߠ = ൣμ , σ , τ൧, 
and three parameters for the SSRT distribution, ߠ௦௧ = ൣμ௦௧, σ௦௧, τ௦௧൧.  
Mean go RT is given by μ + τ  and mean SSRT is given by μ௦௧ + τ௦௧. 
Note that the ex-Gaussian distribution may be substituted with other (shifted) RT 
distributions, such as the Wald, the Weibull, or the lognormal distribution (e.g., 
Heathcote, 2004; Heathcote, Brown, & Cousineau, 2004). The model does not 
interpret the ex-Gaussian distribution as a two stage model, as the convolution 
might suggest, nor does the model interpret , , and  as parameters of the 
underlying processes (Matzke & Wagenmakers, 2009). The model uses the ex-
Gaussian distribution because it is easy to work with mathematically and 
computationally. 

Parameter estimation may proceed by means of standard maximum 
likelihood estimation (e.g., Myung, 2003, Van Zandt, 2000). However, as the 
parametric approach was intended to handle individual as well as hierarchical data 
structures, Matzke et al. (2013a) relied on Bayesian parameter estimation instead 
(e.g., Lee & Wagenmakers, 2013). In the hierarchical approach, rather than 
estimating parameters separately for each participant, the participant-level 
parameters are modeled using truncated normal population-level distributions. The 
population-level distributions act as priors that adjust—shrink—poorly estimated 
extreme parameter values to more moderate ones. As a result, the hierarchical 
approach can provide more accurate and less variable estimates than individual 
estimation, especially if only scarce participant-level data are available (e.g., 
Farrell & Ludwig, 2008; Gelman & Hill, 2007; Rouder, Sun, Speckman, Lu, & 
Zhou, 2003). The posterior distribution of the model parameters can be 
approximated using Markov chain Monte Carlo sampling (e.g., Gilks, Richardson, 
& Spiegelhalter, 1996), which has been implemented in the BEESTS software 
(Matzke, Love, Wiecki, Brown, Logan, & Wagenmakers, 2013). 

Regardless of the type of stop-signal delay setting, the Bayesian parametric 
approach requires relatively few observations per participant to produce reliable 
estimates of SSRT distributions. The individual approach provides accurate and 
precise parameter estimates with approximately 250 stop-signal trials. The 
hierarchical approach requires a sample size of approximately 25 participants, 
each performing as few as 100 stop-signal trials (Matzke et al., 2013a).  

Chevalier et al. (2014) used the Bayesian parametric approach to examine 
the effects of practice on children’s stop-signal performance. They found that 



 

practice differentially effected the leading edge and the slow tail of the SSRT 
distribution: Practice decreased the ߤ௦௧ parameter, whereas it increased the ߬௦௧  
parameter. Colzato, Jongkees, Sellaro, van den Wildenberg and Hommel (2014) 
used the Bayesian parametric approach to show that the administration of tyrosine 
(i.e., a precursor of dopamine) selectively affects the ߤ௦௧ parameter of the SSRT 
distribution, resulting in a decrease in mean SSRT, but no change in the shape of 
the SSRT distribution. 

 

4. Process Models of Response 
Inhibition 

The independent horse-race model, including its parametric variants 
discussed so far, are purely descriptive; they enable researchers to quantify the 
latency of the unobservable stop response, but they do not specify the processes 
that give rise to the finishing time distribution of the go and the stop process. In 
order to explain how stopping occurs one has to rely on process models of 
response inhibition. Process models give direct insights into the mechanisms that 
implement going and stopping and explain the effects of experimental 
manipulations on stop-signal performance.  

In this section we outline two classes of process models of response 
inhibition. The first class of models—the Hanes-Carpenter model and the race 
diffusion model—focuses on describing the properties of the go and the stop 
process in order to explain how the finishing time distributions arise. The second 
class of models—the interactive race model and blocked input models—does not 
only describe the nature of the processes that race against each other, but also 
attempts to explain how responses are stopped. 

 

4.1 Describing the Properties of the Go and Stop 
Process 

The Hanes-Carpenter model and the race diffusion model conceptualize 
response inhibition as a race between a set of evidence accumulators. The two 
models, however, differ in the mathematical formulation of the evidence 
accumulation process and the type of go task that they can be applied to. The 
Hanes-Carpenter model was developed to describe how saccades are inhibited and 



 

applies exclusively to simple RT go tasks (i.e., go task with a single go response).  
It does not account for choice errors. The race diffusion model was developed to 
describe stopping of all kinds of responses in simple and choice RT tasks, 
accounting for accuracy as well as RT. Note that most stop-signal studies have 
used choice RT tasks (for reviews, see Logan, 1994; Verbruggen & Logan, 
2008b). Both models can be considered as special cases of the Logan and Cowan 
(1984) independent horse-race model with specific parameterizations of the go and 
stop processes. 

 

4.1.1 Hanes-Carpenter Model of Saccadic Inhibition 
The Hanes-Carpenter model (Hanes & Carpenter, 1999; see also Hanes & 

Schall, 1995; Hanes et al., 1998) aims to explain the processes that are involved in 
a saccadic version of the stop-signal task. Participants fixate their gaze at a central 
fixation point, and when the fixation point disappears, they are required to make a 
saccade to a visual target that appears in one of two positions in the periphery. 
Occasionally, this go task is interrupted by a visual stop signal (e.g., reappearance 
of the fixation point) that instructs participants to withhold their eye movement on 
that trial. Performance is much like in stop-signal tasks with other responses, 
except that go RTs and SSRTs are shorter and participants never make choice 
errors. 

The Hanes-Carpenter model is based on the Linear Approach to Threshold 
with Ergodic Rate (LATER; Carpenter, 1981; Carpenter & Williams, 1995) 
approach, a model that has been successfully used to describe the processes 
involved in the initiation of saccades in humans. LATER assumes that saccade 
initiation can be conceptualized as a signal that rises linearly towards a fixed 
threshold; when the signal reaches the threshold, the saccade is initiated. The rate 
of rise is assumed to vary from trial to trial according to a normal distribution. The 
Hanes-Carpenter model assumes that the inhibition of saccades can be similarly 
formalized as a rise-to-threshold mechanism, such as the one shown in Figure 5, 
where the go and the stop process rise linearly towards their respective thresholds. 
If the go process reaches the threshold first, the saccade is initiated; if the stop 
process reaches the threshold first, saccade initiation is inhibited. The Hanes-
Carpenter model is similar to the Linear Ballistic Accumulator model, which 
allows multiple choices and variation in starting point to account for errors (Brown 
& Heathcote, 2008).  

 



 

 
Figure 5. The Hanes-Carpenter model. The model assumes that the go process raises in a linear 
fashion with rate r୭ from a predefined starting point s୭ to a fixed threshold θ୭. Similarly, the 
stop process raises in a linear fashion with rate rୱ୲୭୮ from a starting point sୱ୲୭୮ to a fixed 
threshold θୱ୲୭୮. In the illustration, the stop process reaches the threshold before the go process; 
saccade initiation is therefore inhibited. 

 
Specifically, the Hanes-Carpenter model assumes that the go process ݐ 

raises in a linear fashion with rate ݎ from a predefined starting point ݏ to a 
fixed threshold ߠ: 

ݏ + ݐݎ =  . (17)ߠ 
 

If  ݎ is assumed to vary from trial to trial according to a normal distribution with 
mean ߤ and standard deviation ߪ, the probability density function of the 
finishing times of the go process is given by: 
 

݂(ݐ) = ߠ − ݏ
ଶݐߨ√2ߪ exp

ێۏ
ێێ
ۍ
−

ቆߠ − ݐݏ − ቇߤ
ଶ
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ۑے
ۑۑ
ې
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Similarly, the stop process ݐ௦௧ is assumed to increase linearly with rate 

 ௦௧, where the rate of rise isߠ ௦௧ to a fixed thresholdݏ ௦௧ from a starting pointݎ
normally distributed with mean ߤ௦௧ and standard deviation ߪ௦௧. The probability 
density function of the finishing times of the stop process is given by substituting 
the stop parameters in Equation 18. The probability density function of the signal-
respond RTs and the survival distribution of SSRTs can be obtained by 
substituting into Equation 6 and 14, respectively. The model also features two 
fixed parameters that quantify the constant processing time of the go and the stop 
signals. The model parameters may be estimated with Monte Carlo simulations 
(Hanes & Carpenter, 1999) or with maximum likelihood estimation (e.g., Corneil 
& Elsley, 2005; Kornylo, Dill, Saenz, & Krauzlis, 2003) using analytic 
expressions for the density functions of the finishing time distributions and the 
signal-respond RTs (Colonius et al., 2001).  

The Hanes-Carpenter model can be used to estimate SSRT. The mean 
finishing time for the stop process is simply (ߠ௦௧ −  ௦௧. Theݎ/(௦௧ݏ
distribution of finishing times for the stop process can be obtained by substituting ݎ௦௧, ݏ௦௧, and ߠ௦௧ into Equation 18. These statistics describe the “parent” 
distribution of the stop runner in the race. To generate the distribution of finishing 
times when the stop process wins the race, the distribution from Equation 18 
would have to be substituted into Equation 6. 

Hanes and Carpenter (1999) successfully applied the model to the data of 
four participants and concluded that the process of saccade inhibition can be 
described with an independent race mechanisms with a linear rise to threshold. 
Colonius et al. (2001) used the Hanes-Carpenter model to show that saccade 
inhibition is more efficient in response to auditory stop signals than visual stop 
signals. 

4.1.2 The Race Diffusion Model 
The race diffusion model is a specific instantiation of the general 

independent race model developed by Logan et al. (2014). As the name suggests, 
the general independent race model is a generalization of the standard independent 
horse-race model that can account for go and stop performance in (multiple-) 
choice RT tasks. The model assumes a race between a set of stochastically 
independent evidence accumulators (Ratcliff & Smith, 2004), one accumulator 
that corresponds to the stop response and N accumulators that correspond to the N 
possible responses on the go task. The response and corresponding RT on a given 
trial is determined by the first accumulator that reaches its threshold. The standard 
independent horse-race mode is a special case of the general independent race 



 

model with a single accumulator for the go process and another one for the stop 
process.  

The model predicts that the probability of go response ݅, ݅ = 1, … ܰ, is 
given by the probability that go process i finishes before all other runners in the 
race: 

ோܲ௦ௗ,(ݐௌௌ) =  න ݂,(ݐ) ෑ ቀ1 − ቁ(ݐ),ܨ ቀ1 − ݐ)௦௧ܨ − ௌௌ)ቁݐ
ஷ

∈ே
,ݐ݀

ஶ


 

 
(19) 

where ݂, is the probability density function of the finishing times of the ݅௧ go 
accumulator and ܨ௦௧(ݐ −  ௌௌ) is the cumulative distribution function of theݐ
finishing times of the stop accumulator at ݐௌௌ. On go trials, ݐௌௌ is set to ∞, and ܨ௦௧(ݐ − -ௌௌ) equals 0. The probability of successful inhibition on a given stopݐ
signal delay is given by: 

ூܲ௧(ݐௌௌ) =  න ௦݂௧(ݐ − (ௌௌݐ ෑ ቀ1 − ቁ(ݐ),ܨ
∈ே

.ݐ݀
ஶ


 

 
(20) 

The joint probability density function of RTs given response i is then given by: 
 

݂(ݐ|ݐௌௌ) =  ݂,(ݐ) ∏ ቀ1 − ቁஷ∈ே(ݐ),ܨ ቀ1 − ݐ)௦௧ܨ − ௌௌ)ቁݐ
1 − ூܲ௧(ݐௌௌ) . (21) 

  
On go trials, ܨ௦௧(ݐ −  ,both equal 0. On stop-signal trials (ௌௌݐ)ௌௌ) and ூܲ௧ݐ
ௌௌݐ ≪ ∞, and Equation 21 gives the probability density function of signal-
respond RTs for response i. The survival distribution of SSRTs at a given stop-
signal delay can be obtained by substituting the probability density function of the 
go RTs 

݂(ݐ) =   ݂,(ݐ)
 ∈ே

ෑ ቀ1 − ቁ(ݐ),ܨ
ஷ

∈ே
 

 
(22) 

and the probability density function of the signal-respond RTs 
 

ௌ݂ோ(ݐ|ݐௌௌ) =  ∑ ݂,(ݐ)∈ே ∏ ቀ1 − ቁஷ∈ே(ݐ),ܨ ቀ1 − ݐ)௦௧ܨ − ௌௌ)ቁݐ
1 − ூܲ௧(ݐௌௌ)  

 
(23) 

 into Equation 14. 



 

The general independent race model makes general predictions about the 
interplay between response rate and RT distributions without specifying the 
properties of the accumulators that give rise to the finishing time distributions. In 
order to specify the processes that generate the finishing time distributions, Logan 
et al. (2014) investigated three special independent race models: the diffusion 
model (Ratcliff, Van Zandt, & McKoon, 1999), the Linear Ballistic Accumulator 
(Brown & Heathcote, 2008), and the Poisson counter model (van Zandt, Colonius, 
& Proctor, 2000). All three models assume that each runner in the race is a 
stochastic accumulator, but make different assumptions about the nature of the 
evidence accumulation process. All the three models fit the data well, but the race 
diffusion model did slightly better. Here we follow Logan and colleagues and only 
consider the race diffusion model in more detail. 

As shown in Figure 6, the race diffusion model assumes that the stop 
accumulator and each of the N go accumulators is a Wiener diffusion process with 
drift rate ξ, starting point 0, and a single threshold z. The model also assumes a 
nondecision time ω parameter that quantifies the time required for stimulus 
encoding and response execution and a drift coefficient that was set to 1. The 
finishing time distribution of each accumulator is a Wald (i.e., inverse Gaussian) 
distribution. The probability density function of the finishing time distribution of 
go accumulator  ݅, ݅ = 1, … ܰ, is thus given by: 
 

݂(ݐ) = ݖ 
ଷݐߨ2√ exp ൬− 1

ݐ2 ݐߦ) − )ଶ൰ݖ    for t > 0. (24) 



 

 
Figure 6. The race diffusion model. In the present illustration, the model assumes a race between 
a set of stochastically independent evidence accumulators, one accumulator for the stop response 
and N=2 accumulators that correspond to the 2 possible responses on the go task (i.e., left or 
right-pointing arrow). The model assumes that the accumulators can be described by a Wiener 
diffusion process with drift rate ξ, starting point 0, threshold z, and nondecision time ω. The stop 
accumulator reaches threshold before either of the go accumulators; the go response is therefore 
inhibited. 

The probability density function of the finishing time distribution of the 
stop accumulator with support ݐ > ݐ) ௦௦ௗ can be obtained by substitutingݐ −  (௦௦ௗݐ
for t, and ߦ௦௧ and ݖ௦௧ for ߦ and ݖ in Equation 24. The finishing time 
distribution of the winner of the race is given by the distribution of the minima of 
the Wald distributions for all the runners. 
 In order to account for the RTs of fast error responses, Logan et al. (2014) 
extended the model and allowed the threshold parameter to vary across trials.  



 

Threshold was assumed be a uniform random variable with support ሾ(ݖ − ܽ), ݖ) +ܽ)ሿ. In the extended model, the probability density function of the ݅௧ go 
accumulator is given by: 

݃(ߦ|ݐ, ,ݖ ܽ) = 1
2ܽ (ߙ)߮ൣ − (ߚ)߮ − (ߙ)ߔ൫ߦ − ߦ ൯൧,   for(ߚ)ߔ > 0 and ܽ > 0, 

 (25) 
where ߮(ݔ) and (ݔ)ߔ are the probability density and cumulative distribution 
function of the standard normal distribution, respectively, and ߙ =  ି(௭ିି௧క)

√௧  and 
ߚ =  (௭ାି௧క)

√௧ .   
Note that for ܽ = 0, Equation 25 simplifies to Equation 24. For ߦ = 0, Equation 
25 simplifies to: 

݃(ݖ|ݐ , ܽ) = 1
2ܽ

ሾ߮(ߙ) −  .ሿ(ߚ)߮
  

(26) 

After substituting Equation 25 and 26 into Equations 19-21, the model parameters 
can be estimated with maximum likelihood estimation (Van Zandt, 2000) using 
the correct and error go RT distributions, the signal-respond RT distributions, and 
the inhibition functions.  

The race diffusion model can also be used to estimate mean SSRT and 
SSRT distributions. The parent SSRT distribution can be obtained by calculating 
Equation 24 with the best-fitting stop parameters. The distribution of winning 
SSRTs can be obtained by calculating Equation 25 or 26 with the best fitting stop 
parameters. Logan et al. (2014) found that SSRTs calculated from the model 
agreed well with SSRTs calculated from the data with the integration method. 
 Logan et al. (2014) applied the race diffusion model to investigate capacity 
limitations in the go and the stop process. To test the hypothesis that the go and 
stop processes share capacity, Logan and colleagues assumed that the threshold 
parameter is selectively influenced by strategic factors, whereas the drift rate 
parameter is selectively influenced by structural factors and can therefore be 
interpreted as a measure of processing capacity (Ratcliff & Smith, 2004; Ratcliff 
et al.,1999). Eight different versions of the race diffusion model were fit to the 
stop-signal data of six participants. Each participant performed three series of 
stop-signal trials, one with two choice alternatives, one with four choice 
alternatives, and one with six choice alternatives on the go task. The eight models 
imposed different combinations of constraints on the drift rate and threshold 
parameters of the go and the stop process as a function of the number of choice 
alternatives. In the best fitting model, the drift rate of the go process decreased as 
the number of choice alternatives increased but the drift rate of the stop process 



 

did not vary with the number of alternatives The modeling results led Logan and 
colleagues to conclude that (1) the go process has limited capacity and (2) that the 
stop process does not share capacity with the go process. These findings support 
the functional independence of the go and the stop process (see Section 2.5). 

 

4.2 Describing How Responses are Inhibited  
The Hanes-Carpenter model and the race diffusion model outlined in the 

previous section describe the nature of the go and the stop process, but do not 
specify how responses are stopped. The interactive race model and blocked-input 
models of saccadic inhibition address this limitation. The interactive race model is 
a neurally plausible instantiation of the standard independent horse-race model 
that assumes that responses are stopped by a mechanism that directly inhibits the 
growth of activation of the go process. In contrast, blocked-input models assume 
that stopping is not a result of inhibiting the growth of activation in the go process, 
but rather of blocking the input to the go process, possibly by inhibiting the 
process that generates drift rates or the process that communicates them to the 
response processes.  

The interactive race model and blocked-input models were developed 
within the framework of neurally constrained cognitive modeling. Within this 
framework, evaluation of the descriptive accuracy of competing models is based 
on the models’ ability to simultaneously account for behavioral and 
neurophysiological data. This approach is useful is situations when competing 
cognitive models are indistinguishable on grounds of the predictions they make for 
behavioral data (i.e., model mimicry; Logan, 2004; Myung, Pitt, & Kim, 2005; 
Townsend, & Ashby, 1983; Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). In 
particular, the additional constraints provided by requiring models to account for 
essential features of the neurophysiological data can break model mimicry and can 
contribute to a more principled choice among models (Boucher, Palmeri, Logan, 
& Schall, 2007; Logan, Yamaguchi, Schall, & Palmeri, 2015; Hanes & Schall, 
1996; Turner, Forstmann, Wagenmakers, Brown, Sederberg, & Steyvers, 2013). 

 
4.2.1 Interactive Race Model of Saccadic Inhibition 

The interactive race model (Boucher et al., 2007) is inspired by the 
apparent contradiction between the results of neurophysiological and behavioral 
studies of saccade inhibition. On the neurophysiological side, it is well established 
that saccades are produced by inhibitory interactions between gaze-shifting 



 

neurons that are involved in saccade initiation and gaze-holding neurons that are 
involved in saccade inhibition (for a review, see Munoz & Schall, 2003). In 
contrast, on the behavioral and modeling side, there is substantial evidence for the 
independence of the go and the stop process. In particular, the standard 
independent horse-race model has been repeatedly shown to provide excellent 
description of behavior in the stop-signal paradigm in general (see Section 5) and 
the saccadic stop-signal task in particular (e.g., Hanes & Carpenter, 1999).  

To resolve this paradox, Boucher et al. (2007) proposed a simple network 
shown in Panel A of Figure 7 that consists of a go (or move) and a stop (or 
fixation) unit that may interact via inhibitory links. The interactive race model 
conceptualizes the go unit as a stochastic accumulator that gathers evidence to a 
threshold θ. The saccade is initiated when activation in the go unit reaches 
threshold. The stop process is formalized as a stochastic evidence accumulator that 
stops saccade execution by inhibiting the growth of activation of the go unit and 
preventing it from reaching threshold. Inhibition is thus successful if the stop unit 
becomes active early enough and strongly enough to suppress the activation of the 
go unit before saccade initiation.  

The model assumes constant rates of rise to threshold with noise terms that 
are drawn from zero-centered Gaussian distributions. The following differential 
equations (Usher & McClelland, 2001) describe the change in activation of the go 
and stop units within time step dt (ௗ௧

ఛ  can be set to 1): 

݀ܽ௩(ݐ) = ݐ݀
߬ ቀߤ௩ − ݇௩ ∗ ܽ௩(ݐ) − ௫ߚ ∗ ܽ௫(ݐ)ቁ + ඨ݀ݐ

߬  ௩ (27)ߝ 
 

݀ ܽ௫(ݐ) = ݐ݀
߬ ቀߤ௫ − ݇௫ ∗ ܽ௫(ݐ) − ௩ߚ ∗ ܽ௩(ݐ)ቁ + ඨ݀ݐ

߬ ௫ߝ  , (28) 
 

where ߤ௩  and ߤ௫ represent the mean growth rates of the go and the stop units, 
respectively, and ߝ௩  and ߝ௫ are Gaussian noise terms with standard deviation 
௩ߪ  and ߪ௫ that reflect the amount of noise added in each step of the rise. The 
crucial ingredient of the model is the inhibitory link between the go and the stop 
unit: the ߚ௩ parameter reflects the inhibitory influence of the go unit on the 
stop unit; ߚ௫ reflects the inhibitory influence of the stop unit on the go unit. The 
amount of inhibition is determined by the activation level ܽ௩  and ܽ௫ at time 
point t. The leakage parameters k ensures that activation does not increase without 
bounds and can be set to 0. The model also features three parameters that quantify 
the time needed for stimulus encoding and for the ballistic stage of the go process, 
some of which were fixed to values derived from physiological measurements. 



 

Model parameters can be estimated with optimizing the fit between observed and 
predicted data by minimizing a Pearson ߯ଶstatistic (Ratcliff & Tuerlinckx, 2002). 

To assess the model’s ability to describe the behavioral data (see also 
Section 5.2), Boucher et al. (2007) fit the model to behavioral data from two 
monkeys who performed the saccadic stop-signal task and found good fits to 
inhibitions functions and go RT and signal-respond RT distributions. To assess the 
model’s ability to predict the neurophysiological data, Boucher and colleagues 
proposed a set of linking propositions (Schall, 2004) that connects the model 
architecture to underlying physiology. In particular, they linked the go unit to 
movement-related neurons and the stop unit to fixation-related neurons in frontal 
eye fields and superior colliculus (Hanes & Schall, 1996; Pouget et al., 2011; 
Ratcliff, Cherian, & Segraves, 2003). They suggested that the inhibitory 
connections within the circuit of fixation and movement neurons were sufficient to 
explain the inhibition of responses.  

The interactive race model that best satisfied the simultaneous constraints 
provided by the neural and behavioral data assumed that the inhibitory effect of 
the stop process on the go process is delayed and very brief. This result led 
Boucher et al. (2007) to conclude that response inhibition consists of two stages: 
during the first stage—the encoding stage—the go and stop process are 
independent; during the second stage—the interruption stage—the stop process 
potently inhibits the go process. As the interruption stage is very brief, SSRT 
estimates from the independent horse-race model are valid measures of the latency 
of stopping because it mostly reflects the encoding stage of response inhibition. 

 
4.2.2 Blocked-Input Models of Saccadic Inhibition 

Logan et al. (2015) proposed a family of alternatives to the interactive race 
model that provide different explanations of how saccades are stopped in the stop-
signal task. Logan and colleagues focused on blocked-input models that postulate 
that saccades are not stopped by directly inhibiting the growth of activation of the 
go process, but rather by blocking the input to the go unit, operationalized as 
setting its drift rate to zero (Logan, 1983; Logan & Cowan, 1984).  



 

The blocked input model conceptualizes the go (move) and the stop 
(fixation) units (see Panel B of Figure 7) as two stochastic accumulators that race 
towards their respective threshold ߠ௩ and ߠ௫. The change in activation of the 
go and stop unit can be described with Equations 27 and 28. According to the 
model, when the stop unit activation reaches threshold ߠ௫, it blocks the input to 
the go unit by setting ߤ௩  equal to 0. As a result, activation of the go unit will 
not reach threshold ߠ௩; go activation will either hover (if ݇௩ = 0) or will 
start to decay (if ݇௩ > 0). 

Figure 7. The architecture of the interactive race model and the blocked input model of saccadic 
inhibition. Panel A: Interactive race model of saccadic inhibition. The go process is identified with 
movement-related neurons and the stop process is identified with fixation-related neurons in frontal eye 
fields and superior colliculus. In model fits, ߚ௫ is much larger ߚ௩. Panel B: Blocked input model of 
saccadic inhibition. In the first version of the model ߚ௩ = ߚ௫ = 0.  In the second version of the model 
 ௫> 0 to account for fixation-related activity at the beginning of a trial. Stopping isߚ ௩ > 0 andߚ
accomplished by activating the stop process, which sets ݁ݒ݉ߤ to zero. (Adapted from Figure 9 in Logan et 
al., 2015). 
  

 Logan et al. (2015) first considered a blocked input model in which ߚ௩ = ௫ߚ =  0, and found that it fit the behavioral data as well as the 
interactive race model. The blocked input model provided a better description of 
the physiological data; the interactive race model predicted a reduction in go 
activation after the stop signal that was much steeper than observed in the neural 



 

activity. Logan et al. then extended the models back in time to consider activity at 
the start of the trial when the eyes were fixated. Trials began with the fixation unit 
fully activated and inhibiting the go process, which had to overcome this 
inhibition when a go stimulus appeared. These models imposed strong constraints 
on the stop and go parameters. In particular, ߚ௫ and ߤ௫ could not be so large 
that they inhibit all growth in go activation, or else saccades would never occur. 
These constraints led to equivalent predictions of physiological data but the 
blocked input model provided a better account of the behavioral data than the 
interactive race model. This led Logan et al. to re-evaluate the linking propositions 
that connected the stop process with fixation neurons in frontal eye fields and 
superior colliculus. They concluded that fixation neurons were not directly linked 
to the stop process and instead identified the stop process with a process outside 
the network that tips the balance in favor of stopping or going. 

  

5. Testing the Goodness-of-Fit of the 
Horse-Race Model 

Conclusions from the model-based analysis of response inhibition data are 
only warranted if the independent horse-race model indeed provides an adequate 
description of the data. Non-parametric methods for assessing the goodness-of-fit 
of the horse-race model focus on evaluating the context independence assumption 
by analyzing signal-respond RTs. Parametric methods for assessing goodness-of-
fit also examine the descriptive accuracy of the chosen parametrization. 

 

5.1 Non-Parametric Methods 
Non-parametric methods for assessing the goodness-of-fit of the horse-race 

model rely on evaluating the context independence assumption. The analyses 
proceed by comparing the mean and the entire distribution of observed signal-
respond RTs to predictions from the independent horse-race model.  

First, as shown in Equation 4 and Figure 2, the independent horse-race 
model predicts that mean signal-respond RT should be faster than mean go RT. As 
explained in Section 2.4, this prediction should hold regardless whether SSRT is 
constant or it is a random variable (Colonius et al., 2001; Logan & Cowan, 1984). 
This prediction has been confirmed in many studies across a range of different 
populations and experimental manipulations (e.g., de Jong et al., 1990; Hanes & 



 

Schall, 1995; Logan et al. 1984; Osman et al., 1986; van den Wildenberg, & van 
der Molen, 2004; Verbruggen et al., 2004; Verbruggen, Stevens, et al., 2014). 

Second, as discussed in Section 2.3, the independent horse-race model 
predicts that mean signal-respond RT should increase with increasing stop-signal 
delay. This prediction can only be evaluated if a large number of stop-signal trials 
and hence a large number of signal-respond RTs are available on each stop-signal 
delay; with a small number of stop-signal trials, the estimation of the mean signal-
respond RTs will be unstable. The increase in mean signal-respond RT as a 
function of stop-signal delay has been confirmed in many studies (de Jong et al., 
1990; Hanes & Schall, 1995; Logan et al., 1984; Osman et al., 1986). Other 
studies have, however, reported violations of this prediction especially at short 
stop-signal delays that typically feature only a small number of signal-respond 
RTs (e.g., Logan, 1981, Logan et al, 1984). 

Third, the independence assumption is often tested by comparing the 
observed mean signal-respond RTs to the mean signal-respond RTs predicted by 
the independent horse-race model. Predicted mean signal-respond RTs can be 
generated for each stop-signal delay by rank-ordering the go RTs and calculating 
the mean of the ݊ fastest go RTs, where ݊ is computed by multiplying the number 
of go RTs with ோܲ௦ௗ(ݐௌௌ) (see Section 3.1.1). Several studies have reported 
only negligible differences (e.g., de Jong et al., 1990; Hanes and Schall, 1995; 
Logan and Cowan, 1984), whereas others have found substantial discrepancies 
between observed and predicted mean signal-respond RTs (e.g., Colonius et al., 
2001, van den Wildenberg, van der Molen, & Logan, 2002; Verbruggen et al., 
2004), especially at short stop-signal delays. However, testing differences between 
observed and predicted mean signal-respond RTs is not a conclusive test of the 
independence assumption of the horse-race model. The method of generating 
predicted signal-respond RTs is based on the unrealistic assumption of constant 
SSRT. As a result, signal-respond RTs that are longer than ( തܶ௦௧ +  ௌௌ) areݐ 
excluded from the computation of mean signal-respond RT, which results in a 
downward bias for the predictions. Moreover, Band et al. (2003) showed that the 
difference between observed and predicted mean signal-respond RT is not only 
sensitive to violations of context independence, but is also strongly influenced by 
SSRT variability; even if context independence holds, increasing SSRT variability 
increases the difference between observed and predicted mean signal-respond RT. 
Band and colleagues also showed that the difference between observed and 
predicted signal-respond RT is not sufficiently sensitive to violations of the 
stochastic independence assumption of the horse-race model. 

Lastly, the independent horse-race model makes specific predictions for the 
entire distribution of signal-respond RTs. As discussed in Section 2.4, the model 
predicts that the signal-respond RT distribution and the go RT distribution share a 
common lower bound, and diverge at higher quantiles. Moreover, the shorter the 



 

stop-signal delay, the steeper the rise of the cumulative distribution function of the 
signal-respond RTs. Although these predictions have been confirmed by several 
studies (e.g., Boucher et al., 2007; Camalier et al., 2007; Osman et al., 1986), 
others have reported violations of the distribution equality test (Colonius et al., 
2001). 

 

5.2 Parametric Methods 
Parametric methods for assessing the goodness-of-fit of the horse-race 

model focus on the adequacy of the chosen architecture and the descriptive 
accuracy of the parametric form assumed for the finishing time distribution of the 
go and the stop process. Parametric methods proceed by comparing the observed 
data to data predicted by the model. 

 Matzke et al. (2013a) used Bayesian posterior predictive simulations 
(Gelman, Meng, & Stern, 1996) to examine the descriptive accuracy of their ex-
Gaussian distributional approach by comparing predictions based on the joint 
posterior distribution of the model parameters to the observed data. Matzke and 
colleagues reported that the model provided an adequate description of the 
inhibition functions and the signal-respond RT distributions of most participants. 
Logan et al. (2014) confirmed the goodness-of-fit of the race diffusion model by 
comparing the observed inhibition functions, error rates, and go RT and signal-
respond RT distributions to model predictions generated with the maximum 
likelihood estimates from the best fitting model. Logan et al. (2015, see also 
Boucher et al. 2007) assessed the descriptive accuracy of the interactive-race and 
the blocked-input model by comparing the observed inhibition functions and the 
go RT and signal-respond RT distributions to the ones predicted by the best fitting 
parameter values obtained by minimizing a Pearson ߯ଶ statistic. Similarly, Hanes 
and Carpenter (1999) relied on the comparison between observed and predicted 
inhibition functions and signal-respond RT distributions to verify the goodness-of-
fit of their model. However, Colonius et al. (2001) reported that the horse-race 
model in general and the Hanes-Carpenter model in particular failed to account for 
the signal-respond RTs of one of their three participants, suggesting a violation of 
independence.  

 

5.3 The Independence Assumption in Practice 
Stop-signal data from simple stopping tasks are mostly consistent with the 

independence assumptions of the horse-race model, but more complex selective 



 

stopping tasks have shown consistent violations of independence (e.g., Bissett & 
Logan, 2014; Verbruggen & Logan, 2015). Logan and Cowan (1984) introduced 
the independence assumptions to simplify the mathematical derivation of the 
horse-race model. Violations of the context and stochastic independence 
assumptions, however, should not be taken lightly as they invalidate calculations 
based on the race model. Band et al. (2003) showed that violations of stochastic 
independence may bias SSRT estimates and influence the slope of the ZRFT 
transformed inhibition function (see also de Jong et al., 1990).  

Fortunately, traditional SSRT estimation methods that rely on central stop-
signal delays where ோܲ௦ௗ approximates 0.50 are relatively unaffected by minor 
violations of the independence assumptions (Band et al., 2003). Hence the mean 
method, whether used in combination with fixed stop-signal delays or delays 
resulting from tracking, is robust to violations of independence (although it may 
suffer from other problems, as discussed in Section 3.1 and Section 7.1.2). 
Similarly, the integration method results in reliable SSRT estimates as long as 
computations are based on the central part of the inhibition function. The midpoint 
of the inhibition function is automatically obtained with tracking, but can also be 
approximated with fixed stop-signal delays that fall in the central part of the 
inhibition function (see e.g., Logan et al., 1984; Logan et al., 2014). Note however 
that the integration method assumes that SSRT is constant, an assumption that is 
necessarily at odds with the possibility of a correlated go and stop process. 
Presently there are no reliability studies available for Matzke et al.’s (2013a) 
distributional approach and the complex process models of response inhibition 
discussed in Section 4. 

 

6. Variants of the Stop-Signal Task 
So far, we have focused on performance in the stop-signal task in which 

participants responded to a go stimulus, but withheld their response whenever a 
stop signal occurred. In this section, we will briefly discuss some variants of the 
standard stop-signal task.  

 



 

6.1. Stopping in Stop-Change and Selective Stop 
Tasks 

Two popular variants of the stop-signal task are the stop-change task and 
the selective stop task. In stop-change tasks, subjects are instructed to stop the 
originally planned go response and execute an alternative “change” response when 
a signal occurs (for reviews, see Boecker, Gauggel, & Drueke, 2013; Logan & 
Burkell, 1986; Verbruggen & Logan, 2009a). Experimental, computational, and 
neuro-imaging work suggests that participants first inhibit the original go response 
and then execute the alternative change response (Boecker et al., 2013; Camalier 
et al., 2007; Jha et al., 2015; Verbruggen, Schneider, & Logan, 2008). In selective 
stop tasks, subjects are instructed to stop their response on some signal trials, but 
not on others (for a short review, see Bissett & Logan, 2014). There are two 
variants of the selective stop task: in stimulus selective stop tasks, different signals 
can be presented and subjects must stop if one of them occurs (valid signal), but 
not if the others occur (invalid signals); in motor selective stop tasks, subjects 
must stop some of their responses (critical responses) but not others (non-critical 
responses).  

The independent horse-race model has been applied to the stop-change task 
and the selective stop task to estimate SSRT. Several studies indicate that going in 
the primary go task and stopping are independent in the stop-change paradigm. 
For example, Logan and Burkell (1986) directly compared performance in a stop-
change task (with only valid signals) with performance in a dual-task paradigm. 
They found a standard dual-task effect in the dual-task task: When the delay 
between two go stimuli decreased, the latency of the second response increased 
(indicating dual-task interference). A similar dual-task effect was observed on 
signal-respond trials in the stop-change task: When the delay between the go 
stimulus and the change signal decreased, the latency of the change response 
increased (indicating dual-task interference). However, when inhibition of the first 
response was successful, stop-change performance was not affected much by the 
delay between the go stimulus and the change signal (see e.g., Hübner & Druey, 
2006, for a replication). In another study, Verbruggen, Schneider et al. (2008) 
manipulated the delay between the stop signal and a signal indicating which 
change response had to be executed. As this delay increased, the probability of 
stopping the primary task response changed very little, which indicates that the 
stop process was not influenced by the selection and execution of the change 
response. Combined, these studies indicate that stopping is largely independent 
from going in the primary task and going in the secondary task in the stop-change 
paradigm, which is consistent with the independent horse-race model. 

Most researchers in the selective stop literature also assume that the 
decision to stop or not does not interact with ongoing go processes. (Note that they 



 

have to make this assumption to estimate SSRT.) However, Bissett and Logan 
(2014) found that signal-respond RT and invalid-signal RT were sometimes longer 
than go RT in stimulus-selective stop tasks. A similar pattern of results was 
observed by de Jong, Coles, and Logan (1995) in a motor variant of the selective 
stop task: Signal-respond RTs for critical responses and signal RTs for non-critical 
responses were longer than go RT. These findings suggest that selecting the 
appropriate response to the signal may interact with ongoing go processes 
(violating the context independence assumption of the independence horse-race 
model; see above). Verbruggen and Logan (2015) tested the hypothesis that the go 
and stop process share capacity in selective stopping tasks by manipulating the 
consistency of mapping between signals and the requirement to stop or ignore in 
response to the signal. In consistent mapping conditions, each signal played the 
same role throughout the experiment; in varied mapping conditions, the role 
changed repeatedly over the course of the experiment. Following Shiffrin and 
Schneider (1977) and others, they assumed the varied mapping conditions would 
demand more capacity than the consistent mapping conditions, and so should 
produce larger violations of context independence. That is what they found.  

These selective stopping results are interesting in contrast with simple 
stopping, where increasing the capacity demands of the go process has no effect 
on the stop process (see Section 4.1.2). We propose that this is due to the low 
selection demands in standard stop-signal tasks. This does not imply that capacity 
sharing can never occur in these tasks. The stop rate parameters depend on the 
discriminability, intensity, and modality of the stop signal (e.g., van der Schoot, 
Licht, Horsley, & Sergeant, 2005), which could be interpreted as a capacity 
limitation (Logan et al., 2014). Furthermore, competition between visual signals in 
the go and the stop tasks can influence stopping (Verbruggen, Stevens et al., 
2014), which is consistent with the idea that stimuli have to compete for limited 
processing capacity (e.g., Bundesen, 1990; Desimone & Duncan, 1995). Finally, 
“functional dependence” (see Section 2.5) could also be interpreted as a capacity 
limitation. Thus, it seems that under certain circumstances, capacity sharing may 
occur in simple stop-signal and stop-change tasks. 

 

6.2. Discrete versus Continuous Tasks  
Most stop-signal tasks involve the execution and inhibition of discrete key 

presses. A few studies have also explored stopping in continuous stop-signal tasks 
(e.g., Morein-Zamir, Chua, Franks, Nagelkerke, & Kingstone, 2006; Morein-
Zamir, Nagelkerke, Chua, Franks, & Kingstone, 2004; Morein-Zamir & Meiran, 
2003). In such tasks, a target moves on the screen and participants are instructed to 
track it with a mouse or by pressing a force sensor. After a variable delay, a stop 
signal is presented, instructing the participant to stop the continuous response as 



 

quickly as possible. SSRT can be defined as the moment at which substantial 
deceleration (Morein-Zamir & Meiran, 2003) or pressure offset (Morein-Zamir et 
al., 2004) occurs.  

A main advantage of a continuous stop task is that the mean and the 
variability of SSRT can be measured directly. For example, Morein-Zamir, 
Hommersen, Johnston, and Kingstone (2008) examined performance of children 
with ADHD and matched control participants in a discrete (standard) stop-signal 
task and in a continuous (force-pressure) variant. In both tasks, SSRT was longer 
for children with ADHD than for the control children. This is consistent with other 
studies (for meta-analyses, see e.g., Oosterlaan, Logan, & Sergeant, 1997; Lipszyc 
& Schachar, 2010). Furthermore, the continuous variant revealed that stopping 
latency was also more variable in children with ADHD. Thus, stopping seems both 
slowed and more variable in children with ADHD. 

The direct measurement of SSRT in continuous stop-signal tasks brings two 
additional advantages. First, fewer trials may be required to obtain a reliable SSRT 
measure. Second, SSRT can be measured even when the independence 
assumptions are violated. As discussed in Section 5.3, in discrete stop-signal tasks, 
SSRT estimates may be unreliable when the assumptions of the independent 
horse-race model are violated. Continuous stop tasks do not require the 
independence assumptions to estimate SSRT. Therefore, they can provide an index 
of inhibitory control (broadly defined) even when going and stopping interact or 
share processing capacity (for an alternative procedure, see Verbruggen & Logan, 
2015).  

In sum, continuous variants of the stop task seem to have certain 
advantages. However, only a few studies have used these tasks, and it remains 
unclear to what extent the same cognitive and neural mechanisms are involved in 
stopping discrete and continuous responses. Brunamonti, Ferraina, and Paré 
(2012) compared stop performance in tasks in which participants had to press a 
button with a finger, move a joystick with their wrists, or reach to a stimulus with 
their arms. SSRT was similar in all tasks, indicating that common inhibitory 
control mechanisms were involved (see also Chen, Scangos, & Stuphorn, 2010). 
Furthermore, Morein-Zamir et al. (2004) found that SSRTs in discrete and 
continuous tasks are highly correlated. These findings indicate an overlap in 
control mechanisms. But despite the large overlap, some studies indicate 
differences between controlling continuous and discontinuous movements (e.g., 
Spencer, Zelaznik, Diedrichsen, & Ivry, 2003). Furthermore, many processes are 
involved in stopping actions (see Section 7.3). Thus, further research is required to 
determine which control processes overlap and which processes differ.  

 



 

7. Users’ Guidelines 
The soundness of conclusions from stop-signal studies depends on the quality of the 
data and the validity of the resulting SSRT estimates. In this section we present a 
number of recommendations on how to run, report, and interpret the results from stop-
signal experiments. 

7.1. How to Run Stop-Signal Experiments 
7.1.1 How to Collect Stop-Signal Data 

 The stop signal paradigm is simple and elegant but conducting experiments 
is complicated by inherent tradeoffs between stopping and going: Participants 
succeed at the go task by going faster but they succeed at the stop task by going 
slower. Somehow, they must balance these demands. Many studies have shown 
how the balance they choose can be influenced by factors in the experimental 
design. The most important factor is the predictability of the stop signal: If the 
stop signal is predictable, participants will adjust their behavior to exploit the 
predictability. 

Recommendation 1: Use a broad range of stop-signal delays. One 
important dimension of stop signal predictability is stop-signal delay. Participants 
adapt to the range of delays in the experiment (Lappin & Eriksen, 1966; Logan, 
1981; Ollman, 1973), slowing go RT to increase the probability of stopping. Best 
performance is obtained with a broad range of delays that span the entire 
inhibition function (Logan, 1981). Under those conditions, the occurrence of the 
stop signal is maximally unpredictable, so participants have no predictability to 
exploit. This is easily accomplished by setting fixed delays and it is usually 
accomplished by the tracking procedure, which often produces bell-shaped 
distributions of stop-signal delays. We caution against more sophisticated tracking 
procedures that reduce the step size to converge on a single value, as that would 
reduce the range of stop-signal delays and increase the predictability of the stop 
signal. It may be better to combine them with two fixed delays, one so early that 
participants can nearly always stop and one so late that participants can rarely or 
never stop (e.g., Janssen, Heslenfeld, van Mourik, Logan, & Oosterlaan, 2015). 

Recommendation 2: Present stop signals on a minority of trials.  Another important dimension of stop signal predictability is the probability that a 
stop signal will occur on a given trial. Participants slow down as stop signal 
probability increases (Logan, 1981; Logan & Burkell, 1986), even in the tracking 
procedure, which keeps ோܲ௦ௗ  constant at 0.5 (Bissett & Logan, 2011; 
Verbruggen & Logan, 2009b). Stop signal probability typically varies between 0.1 



 

and 0.3. Larger values produce greater slowing that may reflect strategic changes 
in the go task. Other things equal, we recommend choosing a stop signal 
probability between 0.1 and 0.3. 

Recommendation 3: Take steps to avoid slowing in anticipation of stop signals. Participants almost always slow go RT when stop signals are presented.  
The slowing appears to result from a proactive strategy intended to increase 
probability of successful inhibition. It can be elicited by cues indicating that stop 
signals may occur on the next few trials: Slowing occurs on the trial immediately 
after the cue, before any stop signals have been presented (Verbruggen & Logan, 
2009). Proactive slowing can be modeled successfully as an increase in the 
threshold for the go response, which is a strategically controlled parameter in the 
race diffusion model (Logan et al., 2014; Verbruggen & Logan, 2009b). 
Furthermore, recent findings indicate that participants also adjust attentional 
settings when they expect a stop signal (e.g. Elchlepp, Lavric, Chambers, & 
Verbruggen, 2016). 

Proactive slowing is ubiquitous but it is often relatively stable over the 
experiment. When it is stable, the race model calculations can be applied using the 
RTs from no-stop-signal trials to estimate the go RT distribution. However, some 
participants slow progressively over the experiment, as if they are trying to beat 
the tracking algorithm. Progressive slowing presents challenges for analysis. It 
biases estimates of SSRT (Verbruggen et al., 2013). Sometimes the bias can be 
reduced by calculating SSRT in each block and collapsing across blocks 
(Verbruggen et al., 2013). However, some participants slow so dramatically that 
the tracking algorithm cannot keep up with them. Their response probabilities on 
stop trials do not converge on 0.5; response rates are usually much lower. Such 
data sets cannot be analyzed meaningfully with the race model and so should be 
discarded.  

What can be done to control proactive slowing in anticipation of stop 
signals? The recommendations in Logan (1994) are still effective: Introduce the go 
task first without the stop task and allow participants some practice to get a feel 
for the task. Perhaps present them with some feedback about their RT and 
accuracy at the end of this practice. Then introduce the stop task and explicitly 
instruct participants not to slow their go RTs. Perhaps allow some practice before 
collecting the data for the main experiment. To control progressive slowing, we 
have been giving participants feedback about go RT and accuracy (number of 
incorrect trials and number of missed trials) and the probability of inhibition at the 
end of each block during the experiment (e.g., Bissett & Logan, 2011; 
Verbruggen, Stevens, et al., 2014). We have participants write down the numbers 
and give them to us to be sure they attend to them. 

Recommendation 4: Look for trigger failures and correct for them. Participants sometimes ignore the stop signal entirely, responding whether or not a 



 

stop signal occurs (Logan & Cowan, 1984). Such trigger failures can bias 
estimates of stopping latencies, let these be summary measures or SSRT 
distributions, and result in distorted inhibition functions (Band et. al., 2003; 
Matzke, Love, & Heathcote, 2015; Verbruggen, Stevens, et al., 2014). Failures to 
trigger the stop process on a constant proportion of the stop-signal trials compress 
the inhibition function. The lower asymptote of the compressed inhibition function 
equals the probability of a trigger failure. Formally, for a given trigger failure 
probability ்ܲி, the response rate on a given stop-signal delay is given by: 

 
ோܲ௦ௗ( ்ܲி , (ௌௌݐ = (1 − ்ܲி) ோܲ௦ௗ( ݐௌௌ) + ்ܲி . (29) 

 
Thus, a lower asymptote greater than zero is diagnostic of trigger failures. Few 
stop-signal studies include enough short stop-signal delays to estimate the lower 
asymptote accurately, however. Alternatively, one may fit a Weibull function to 
the inhibition function with the minimum and maximum point as free parameters; 
the estimated minimum point would reflect the probability of trigger failures (e.g., 
Hanes et al., 1998) 

Trigger failures also result in signal-respond RT distributions that are 
mixtures of the “true” signal respond RT distribution and the go RT distribution: 

 
ௌ݂ோ(ݐ|ݐௌௌ , ்ܲி  ) = ்ܲி ݂(ݐ) +  (1 − ்ܲி) ௌ݂ோ(ݐ|ݐௌௌ) 

 (30) 
Mixture distributions generally have larger variability than their parents, so the 
variance in signal-respond RTs is inflated by trigger failures. Greater variance in 
signal-respond RT than in go RT may be diagnostic of trigger failures. Plots of 
signal-respond and go RT distributions may also be informative. Without trigger 
failures, the upper tail of the signal-respond RT distribution (e.g., the 95th 
percentile) is shorter than the upper tail of the go RT distribution. With trigger 
failures, the upper tail of the observed signal-respond RT distribution is also the 
upper tail of the go RT distribution. Thus, failures of signal-respond and go RT 
distributions to diverge at the upper quantiles may be diagnostic of trigger failures. 

In order to estimate the probability of trigger failures and correct the 
resulting bias in SSRT estimates, Matzke et al. (2015) propsed to parametrize the 
mixture in Equation 30 assuming ex-Gaussian distributions for the go RT and 
SSRT distributions (see also Matzke et al., 2013a). The Bayesian hierarchical 
implementation of the trigger-failure model provides accurate and precise 
parameter estimates with relatively scarce data. Matzke and colleagues reanalyzed 
two published stop-signal data sets (Badcock et al., 2002; Hughes, Fulham, 
Johnston, & Michie, 2012) and showed that the trigger-failure model provided a 
better description of the data than the standard ex-Gaussian Bayesian parametric 



 

approach (Matzke et al., 2013a). On average, participants failed to trigger the stop 
process on 8-9% of the stop-signal trials. Although the probability of trigger 
failure was relatively modest, its presence was shown to severely distort SSRT 
estimates. 
 

7.1.2 How to Analyze Stop-Signal Data 
Recommendation 1: Fit process models to the data and interpret the data in terms of those processes. The process models described in Section 4 

provide good accounts of observed behavior and the underlying physiology, 
describing performance as a stochastic decision (Boucher et al., 2007; Hanes & 
Carpenter, 1999; Logan et al., 2015; Logan et al., 2014). These models estimate 
the distribution of SSRTs as well as its mean, and the distributions may reveal 
interesting differences between conditions and groups. The models interpret 
performance in terms of drift rates, starting points, and thresholds. Concepts like 
strategic slowing, post stop-signal slowing, and inhibitory deficits might be better 
articulated in terms of these more fundamental properties of the decision process 
than simply in terms of mean SSRT. Stochastic decision models have provided 
tremendous insight into go processes and go RT (Ratcliff, Smith, Brown & 
McKoon, 2016). They should provide similar insights into the stop-signal task. 
Note that analyzing stop-signal data using process models requires more data 
points (and therefore longer experiments) than computing summary measures of 
SSRT using traditional estimation methods. 

Recommendation 2: Estimate the distribution of SSRTs. If researchers 
are not interested in the details of the underlying process and are satisfied with 
measures of SSRT, we suggest they harness the Bayesian parametric approach 
(Matzke et al., 2013a) and its trigger-failure variant (Matzke et al., 2015) to 
estimate the distribution of SSRTs. User friendly software that implements 
powerful Bayesian methods is freely available (BEESTS; Matzke et al., 2013b), 
and analyses of distributions may reveal patterns of data that are obscured in the 
means. For example, mean SSRT = stop + stop so  and  may differ between 
conditions that produce equivalent mean SSRTs. They have different effects on 
variability and can be separated by fitting BEESTS to the data.  

Recommendation 3: Use the mean method with caution. The mean 
method produces valid, mathematically justified estimates of mean SSRT if the 
independence assumptions hold and the means of the go distribution and the 
inhibition function are estimated accurately (Logan & Cowan, 1984).  
Unfortunately, few studies estimate the mean of the inhibition function directly 
(e.g., using Equation 11). Instead, most estimate the median of the inhibition 
function with the tracking procedure. If the inhibition function is asymmetrical, 



 

the median will underestimate the mean, and consequently, overestimate SSRT 
(Verbruggen et al., 2013). Inhibition functions are likely to be asymmetrical when 
the go RT distribution is skewed. This can be seen in Equation 3, which defines 
the inhibition function when SSRT is constant as the integral of the go RT 
distribution from 0 to (ݐ௦௧ +  ௌௌ). The inhibition function is simply the go RTݐ
distribution shifted to the right by SSRT. Any skew in the go RT distribution will 
necessarily appear in the inhibition function. Since most RT distributions are 
skewed, we can expect most inhibition functions to be skewed, and thus, we can 
expect the median of most inhibition functions to underestimate the mean we need 
for calculating SSRT. What should researchers do about that? 

The simplest possibility is to abandon the mean method and use the 
integration method instead, as Verbruggen et al. (2013) recommended, but the 
simplicity of the mean method is seductive. If researchers succumb to the 
seduction, we recommend that they check for skew in the go RT distributions.  
One method for checking skew is to fit the ex-Gaussian distribution to the go RTs 
and examine estimates of . Verbruggen et al. showed that estimation errors 
occurred primarily with large values of , so researchers might compare their 
values of  with the values Verbruggen et al. used to determine whether the skew 
in the go RTs compromises estimation of SSRT. Similarly, researchers could 
compare  between groups to see if group differences in SSRT might be artifacts 
of differences in skew. However, if researchers are willing to fit ex-Gaussian 
distributions to their go RTs, we recommend they fit BEESTS to the whole data 
set and get estimates of the entire distribution of SSRTs.   

We also suggest trying to estimate the mean of the inhibition function 
directly, through Equation 11, and using the mean to calculate SSRT, as the race 
model dictates. This works best when the entire inhibition function can be 
estimated, as in experiments with a broad range of fixed delays. The effects of 
skew on the mean depend on the tails of the distribution, so estimating the mean of 
a truncated inhibition function may underestimate the actual mean. The tracking 
procedure typically produces a bell-shaped distribution of stop-signal delays with 
sparse tails that may not extend to the extremes of the inhibition function 
( ோܲ௦ௗ = 0 or 1). We have not explored this possibility through simulations, but 
it would be very informative to do so.  

We recommend against using the median method, in which the median of 
the inhibition function (the mean stop-signal delay in the tracking procedure) is 
subtracted from the median go RT. This solves the problem of estimating the 
appropriate parameter of the inhibition function – the tracking procedure 
converges on the median – but the calculations are not justified in the race model.  
The race model calculations are in terms of means, not medians (Logan & Cowan, 
1984). We have not explored the relation between the mean method and the 



 

median method mathematically or with simulations, but researchers interested in 
using the median method instead of the mean method should do so.   

Recommendation 4: Otherwise, use the integration method. The 
integration method calculated at stop-signal delays near the middle of the 
inhibition function yields accurate, unbiased estimates of SSRT (Band et al., 2003; 
Verbruggen et al., 2013). We recommend the integration method to researchers 
who are interested primarily in mean SSRT. With fixed delays, researchers should 
calculate SSRT at each stop-signal delay and average over stop-signal delays, as 
SSRT decreases with stop-signal delay. Note that SSRT cannot be calculated if 

ோܲ௦ௗ = 1 or 0. Stop-signal delays that produce ோܲ௦ௗ = 1 or 0 should be 
excluded from analysis. With delays set by the tracking procedure, researchers 
should calculate SSRT with the integration method, using the overall ோܲ௦ௗ  as 
the limit of integration and using the mean stop-signal delay as the stop-signal 
delay value. However, this method is compromised if there is progressive slowing 
over the experiment. If there is evidence of progressive slowing, integration SSRT 
should be calculated in each block and averaged over blocks. This can correct for 
progressive slowing if the slowing is not too extreme (Verbruggen et al., 2013). 

 

7.2. How to Report Stop-Signal Experiments  
We recommend that reports of stop-signal experiments contain sufficient 

information to allow an evaluation of the fit of the original horse-race model, on 
which most calculations will rely. We propose that every stop-signal study should 
report the following: 

1. Report the procedure in enough detail that it can be evaluated. Report the 
number of trials overall, the number of stop-signal trials (i.e., the probability of a 
stop signal), the range and value of stop-signal delays used, the method used to 
calculate SSRT, and the number of observations used in that calculation. 

2. Report mean signal-respond and go RT and confirm they are 
significantly different in each experimental condition. With tracking, this can be 
done collapsing over delays. With fixed delays, it should be done at each delay, 
noting that signal-respond RT becomes more similar to go RT as stop-signal delay 
increases, so differences need not be significant at the longest delay. 

3. Confirm that signal-respond RT is shorter than go RT for every 
participant for whom SSRT is estimated. SSRT should not be estimated for 
participants with signal-respond RTs longer than go RTs, as these participants 
violate the independence assumptions of the race model. The number of 
participants excluded for this reason should be reported. The criterion for 
assessing the difference within participants is unclear. The simplest would be to 



 

conduct a t test within each participant, but that may be too strict a criterion. The 
most minimal criterion would be to subtract signal respond RT from go RT and 
conclude signal respond RT was smaller if the difference was positive. Despite the 
ambiguity about the most appropriate criterion, we believe researchers should 
make this comparison and report it. 

4. Report the response rate given a stop signal in each condition. With fixed 
delays, this means reporting the inhibition function in each condition (i.e., the 
probability of responding at each stop-signal delay). With tracking, the probability 
of responding should be calculated for each condition. Some researchers have 
reported inhibition functions from tracking procedures (e.g., Thakkar, Schall, 
Boucher, Logan, & Park, 2011) but they are often noisy at the tails where there are 
few observations so response rate estimates are unstable. 

5. When using the tracking procedure, report the mean stop-signal delay for 
each condition so readers know the baseline from which SSRT was computed. 

6. Use an appropriate method to estimate SSRT. We recommend process 
models, then parametric models, and then the integration method, depending on 
researchers’ goals and interests. Researchers who use the mean method with the 
tracking procedure (where the mean stop-signal delay estimates the median of the 
inhibition function) should address concerns about skew compromising their 
SSRT estimates discussed above (Verbruggen et al., 2013). 

 

7.3. How to Interpret Stop-Signal Data  
A final note concerns the interpretation of the stop-signal data. In the stop-

signal literature, individual or group differences are often attributed to variation in 
the effectiveness of a single inhibitory control function. But many processes 
contribute to stopping an action. As discussed in Section 4, response inhibition 
often requires an interplay between basic and computationally well-defined 
“reactive” processes, such as signal detection, action selection, and suppression of 
motor output or blocking go input. These processes can be regulated and 
influenced by sets of processes that take place on different timescales: outcome 
monitoring, advance preparation (i.e., proactive control), rule acquisition and 
maintenance, associative learning, and development (Verbruggen, McLaren et al., 
2014).  

Thus, it is important to realize that SSRT is a global concept that describes 
the chain of processes involved in an act of control that results in a response being 
withheld. More specifically, SSRT captures the duration of perceptual, decisional, 
and (inhibitory) motor-related processes. For example, previous behavioral studies 
and computational work have highlighted the role of perceptual processes (see 



 

above). Successfully stopping a response also depends on decisional processes, 
such as response selection and memory retrieval (e.g. Logan et al., 2014; van de 
Laar, van den Wildenberg, van Boxtel, & van der Molen, 2010; Verbruggen & 
Logan, 2015). Finally, when the decision to stop is reached, motor output or other 
ongoing processing has to be suppressed (e.g., via a fronto-basal-ganglia network) 
or go input has to be blocked. Thus, in simple stop-signal tasks and their many 
variants, SSRT reflects more than the duration of a single neural inhibitory 
process, and researchers should consider at which processing stage(s) differences 
between groups or conditions arise (for a more elaborate discussion of this issue, 
see e.g., Verbruggen, McLaren, et al., 2014). 

 

8. Concluding Comments 
Response inhibition refers to the ability to suppress responses that are 

inappropriate or no longer required, such as rapidly halting when the traffic light 
turns red. Response inhibition is considered a key component of executive control 
and has received—and continues to receive—considerable attention in fields as 
diverse as psychology, pharmacology, psychiatry, neurology, and biology 
(Verbruggen et al., 2013). In laboratory settings, response inhibition is typically 
investigated with the stop-signal paradigm. The stop-signal paradigm owes its 
popularity to the underlying horse-race model (Logan & Cowan, 1984) that 
facilitates the estimation of the latency of the otherwise unobservable stop 
response.  

We presented a theoretical review of the horse-race model and discussed 
the most important measures of response inhibition performance in the stop-signal 
paradigm. We first outlined the standard independent horse-race model and related 
SSRT estimation techniques, and showed that the independent race architecture 
typically offers an excellent description of stop-signal data across different 
populations, tasks, and experimental manipulations. We then described the latest 
developments in the model-based analysis of stop-signal data, focusing on the 
simultaneous estimation of SSRT distributions and trigger failures and variants of 
the standard horse-race model that give direct insights into the mechanisms of 
stopping. In particular, we discussed two classes of process models of response 
inhibition: models that describe the properties of the go and the stop process in 
order to explain how the finishing time distributions arise and models that attempt 
to explain how responses are stopped. Although these models lack the generality 
of the standard independent horse-race model, they provide fine-grained insights 
into the mechanisms of stopping. We believe that the application of process 



 

models to more complex variants of the stop-signal task, such as the stop-change 
and selective stopping tasks, is a promising area for future research that may also 
benefit from recent developments in Bayesian hierarchical modeling and related 
model selection methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Definitions and Terms  
Response inhibition 

The cognitive concept of response inhibition refers to the ability to suppress 
responses that are inappropriate or no-longer required, which supports 
flexible and goal-directed behavior in ever-changing environments. 
Response inhibition is a key component of executive control.   

Stop-signal paradigm 
The stop-signal paradigm is a popular experimental paradigm to study 
response inhibition. The standard stop-signal paradigm consists of a two-
choice response time task. The primary choice task is occasionally 
interrupted by a stop signal that instructs participants to withhold their 
response on that trial.  

Horse-race model 
The horse-race model posits that response inhibition in the stop-signal 
paradigm can be conceptualized as a horse race between two independent 
processes: a go and a stop process. If the go process wins the race, the 
response in executed; it the stop process wins the race, the response is 
inhibited. According to the horse-race model, response inhibition is thus 
determined by the relative finishing times of the go and the stop process. 

Stop-signal reaction time 
Stop-signal reaction time is the latency of the stop process. Although stop-
signal reaction time cannot be observed directly, it can be estimated using 
the horse-race model. Stop-signal reaction times play a pivotal role in 
diagnosing deficient response inhibition in clinical populations and in 
assessing participants’ stopping ability across different tasks and 
experimental conditions.  

Inhibition function 
Inhibition functions describe the relationship between response rate and the 
time interval between the onset of the primary task stimulus and the onset 
of the stop-signal (i.e., stop-signal delay). The horse-race model predicts 
that response rate increases with increasing stop-signal delay. Inhibition 
functions reflect the outcome of the race between the go and the stop 
process and can be used to compare inhibitory control across populations, 
tasks, or conditions. 
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List of Abbreviations 
 ADHD: Attention Deficit/Hyperactivity Disorder  
 LATER: Linear Approach to Threshold with Ergodic Rate  
 RT: Response Time 
 SSRT: Stop-Signal Reaction Time 
 SSD: Stop-Signal Delay 
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