-
Notifications
You must be signed in to change notification settings - Fork 95
/
default_gsn.m
110 lines (95 loc) · 3.23 KB
/
default_gsn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
% default_gsn -
% Copyright (C) 2013 KyungHyun Cho
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
%
function [G] = default_gsn (layers)
% structure
n_layers = length(layers);
G.structure.n_layers = n_layers;
G.structure.layers = layers;
% data type
G.data.binary = 1;
%G.data.binary = 0;
% nonlinearity
% 0 - sigmoid
% 1 - tanh
% 2 - relu
G.hidden.use_tanh = 1;
% noise type in the hidden variables
% 0 - none
% 1 - white noise
% 2 - dropout noise
G.hidden.noise_type = 1;
G.hidden.noise_level = 0.1;
G.hidden.add_noise = ones(n_layers, 1);
% learning parameters
G.learning.lrate = 1e-3;
G.learning.lrate0 = 5000;
G.learning.momentum = 0;
G.learning.weight_decay = 0;
G.learning.minibatch_sz = 100;
G.learning.lrate_anneal = 0.9;
G.valid_min_epochs = 10;
G.do_normalize = 1;
G.do_normalize_std = 1;
% stopping criterion
% if you happen to know some other criteria, please, do add them.
% if the criterion is zero, it won't stop unless the whole training epochs were consumed.
G.stop.criterion = 0;
% criterion == 1
G.stop.recon_error.tolerate_count = 1000;
% denoising: noise in the visible layer
G.noise.drop = 0.1; % in the case of binary data, salt-and-pepper!
G.noise.level = 0.1;
% initializations
G.W = cell(n_layers, 1);
G.biases = cell(n_layers, 1);
for l = 1:n_layers
G.biases{l} = zeros(layers(l), 1);
if l < n_layers
G.W{l} = sqrt(6)/sqrt(layers(l)+layers(l+1)) * (rand(layers(l), layers(l+1)) - 0.5);
%G.W{l} = 0.001 * (rand(layers(l), layers(l+1)) - 0.5);
end
end
% adadelta
G.adadelta.use = 0;
G.adadelta.momentum = 0.995;
G.adadelta.epsilon = 1e-8;
G.adadelta.gW = cell(n_layers, 1);
G.adadelta.gbiases = cell(n_layers, 1);
G.adadelta.W = cell(n_layers, 1);
G.adadelta.biases = cell(n_layers, 1);
for l = 1:n_layers
G.adadelta.gbiases{l} = zeros(layers(l), 1);
G.adadelta.biases{l} = zeros(layers(l), 1);
if l < n_layers
G.adadelta.gW{l} = zeros(layers(l), layers(l+1));
G.adadelta.W{l} = zeros(layers(l), layers(l+1));
end
end
% iteration
G.iteration.n_epochs = 100;
G.iteration.n_updates = 0;
% learning signals
G.signals.recon_errors = [];
G.signals.valid_errors = [];
G.signals.lrates = [];
G.signals.n_epochs = 0;
% debug
G.verbose = 0;
% hook
G.hook.per_epoch = {@save_intermediate, {'gsn.mat'}};
G.hook.per_update = {@print_n_updates, {}};