forked from openai/openai-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfile_batches.py
764 lines (647 loc) · 30.1 KB
/
file_batches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import asyncio
from typing import List, Iterable
from typing_extensions import Literal
from concurrent.futures import Future, ThreadPoolExecutor, as_completed
import httpx
import sniffio
from .... import _legacy_response
from ....types import FileObject
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from ...._utils import (
is_given,
maybe_transform,
async_maybe_transform,
)
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ....pagination import SyncCursorPage, AsyncCursorPage
from ...._base_client import (
AsyncPaginator,
make_request_options,
)
from ....types.beta.vector_stores import file_batch_create_params, file_batch_list_files_params
from ....types.beta.vector_stores.vector_store_file import VectorStoreFile
from ....types.beta.vector_stores.vector_store_file_batch import VectorStoreFileBatch
__all__ = ["FileBatches", "AsyncFileBatches"]
class FileBatches(SyncAPIResource):
@cached_property
def with_raw_response(self) -> FileBatchesWithRawResponse:
return FileBatchesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> FileBatchesWithStreamingResponse:
return FileBatchesWithStreamingResponse(self)
def create(
self,
vector_store_id: str,
*,
file_ids: List[str],
chunking_strategy: file_batch_create_params.ChunkingStrategy | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""
Create a vector store file batch.
Args:
file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that
the vector store should use. Useful for tools like `file_search` that can access
files.
chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
strategy.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
f"/vector_stores/{vector_store_id}/file_batches",
body=maybe_transform(
{
"file_ids": file_ids,
"chunking_strategy": chunking_strategy,
},
file_batch_create_params.FileBatchCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
def retrieve(
self,
batch_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""
Retrieves a vector store file batch.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
def cancel(
self,
batch_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Cancel a vector store file batch.
This attempts to cancel the processing of
files in this batch as soon as possible.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
def create_and_poll(
self,
vector_store_id: str,
*,
file_ids: List[str],
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: file_batch_create_params.ChunkingStrategy | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Create a vector store batch and poll until all files have been processed."""
batch = self.create(
vector_store_id=vector_store_id,
file_ids=file_ids,
chunking_strategy=chunking_strategy,
)
# TODO: don't poll unless necessary??
return self.poll(
batch.id,
vector_store_id=vector_store_id,
poll_interval_ms=poll_interval_ms,
)
def list_files(
self,
batch_id: str,
*,
vector_store_id: str,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[VectorStoreFile]:
"""
Returns a list of vector store files in a batch.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
page=SyncCursorPage[VectorStoreFile],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"filter": filter,
"limit": limit,
"order": order,
},
file_batch_list_files_params.FileBatchListFilesParams,
),
),
model=VectorStoreFile,
)
def poll(
self,
batch_id: str,
*,
vector_store_id: str,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Wait for the given file batch to be processed.
Note: this will return even if one of the files failed to process, you need to
check batch.file_counts.failed_count to handle this case.
"""
headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}
if is_given(poll_interval_ms):
headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)
while True:
response = self.with_raw_response.retrieve(
batch_id,
vector_store_id=vector_store_id,
extra_headers=headers,
)
batch = response.parse()
if batch.file_counts.in_progress > 0:
if not is_given(poll_interval_ms):
from_header = response.headers.get("openai-poll-after-ms")
if from_header is not None:
poll_interval_ms = int(from_header)
else:
poll_interval_ms = 1000
self._sleep(poll_interval_ms / 1000)
continue
return batch
def upload_and_poll(
self,
vector_store_id: str,
*,
files: Iterable[FileTypes],
max_concurrency: int = 5,
file_ids: List[str] = [],
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: file_batch_create_params.ChunkingStrategy | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Uploads the given files concurrently and then creates a vector store file batch.
If you've already uploaded certain files that you want to include in this batch
then you can pass their IDs through the `file_ids` argument.
By default, if any file upload fails then an exception will be eagerly raised.
The number of concurrency uploads is configurable using the `max_concurrency`
parameter.
Note: this method only supports `asyncio` or `trio` as the backing async
runtime.
"""
results: list[FileObject] = []
with ThreadPoolExecutor(max_workers=max_concurrency) as executor:
futures: list[Future[FileObject]] = [
executor.submit(
self._client.files.create,
file=file,
purpose="assistants",
)
for file in files
]
for future in as_completed(futures):
exc = future.exception()
if exc:
raise exc
results.append(future.result())
batch = self.create_and_poll(
vector_store_id=vector_store_id,
file_ids=[*file_ids, *(f.id for f in results)],
poll_interval_ms=poll_interval_ms,
chunking_strategy=chunking_strategy,
)
return batch
class AsyncFileBatches(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncFileBatchesWithRawResponse:
return AsyncFileBatchesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncFileBatchesWithStreamingResponse:
return AsyncFileBatchesWithStreamingResponse(self)
async def create(
self,
vector_store_id: str,
*,
file_ids: List[str],
chunking_strategy: file_batch_create_params.ChunkingStrategy | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""
Create a vector store file batch.
Args:
file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that
the vector store should use. Useful for tools like `file_search` that can access
files.
chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
strategy.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
f"/vector_stores/{vector_store_id}/file_batches",
body=await async_maybe_transform(
{
"file_ids": file_ids,
"chunking_strategy": chunking_strategy,
},
file_batch_create_params.FileBatchCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
async def retrieve(
self,
batch_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""
Retrieves a vector store file batch.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._get(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
async def cancel(
self,
batch_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Cancel a vector store file batch.
This attempts to cancel the processing of
files in this batch as soon as possible.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
async def create_and_poll(
self,
vector_store_id: str,
*,
file_ids: List[str],
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: file_batch_create_params.ChunkingStrategy | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Create a vector store batch and poll until all files have been processed."""
batch = await self.create(
vector_store_id=vector_store_id,
file_ids=file_ids,
chunking_strategy=chunking_strategy,
)
# TODO: don't poll unless necessary??
return await self.poll(
batch.id,
vector_store_id=vector_store_id,
poll_interval_ms=poll_interval_ms,
)
def list_files(
self,
batch_id: str,
*,
vector_store_id: str,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[VectorStoreFile, AsyncCursorPage[VectorStoreFile]]:
"""
Returns a list of vector store files in a batch.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
page=AsyncCursorPage[VectorStoreFile],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"filter": filter,
"limit": limit,
"order": order,
},
file_batch_list_files_params.FileBatchListFilesParams,
),
),
model=VectorStoreFile,
)
async def poll(
self,
batch_id: str,
*,
vector_store_id: str,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Wait for the given file batch to be processed.
Note: this will return even if one of the files failed to process, you need to
check batch.file_counts.failed_count to handle this case.
"""
headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}
if is_given(poll_interval_ms):
headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)
while True:
response = await self.with_raw_response.retrieve(
batch_id,
vector_store_id=vector_store_id,
extra_headers=headers,
)
batch = response.parse()
if batch.file_counts.in_progress > 0:
if not is_given(poll_interval_ms):
from_header = response.headers.get("openai-poll-after-ms")
if from_header is not None:
poll_interval_ms = int(from_header)
else:
poll_interval_ms = 1000
await self._sleep(poll_interval_ms / 1000)
continue
return batch
async def upload_and_poll(
self,
vector_store_id: str,
*,
files: Iterable[FileTypes],
max_concurrency: int = 5,
file_ids: List[str] = [],
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: file_batch_create_params.ChunkingStrategy | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Uploads the given files concurrently and then creates a vector store file batch.
If you've already uploaded certain files that you want to include in this batch
then you can pass their IDs through the `file_ids` argument.
By default, if any file upload fails then an exception will be eagerly raised.
The number of concurrency uploads is configurable using the `max_concurrency`
parameter.
Note: this method only supports `asyncio` or `trio` as the backing async
runtime.
"""
uploaded_files: list[FileObject] = []
async_library = sniffio.current_async_library()
if async_library == "asyncio":
async def asyncio_upload_file(semaphore: asyncio.Semaphore, file: FileTypes) -> None:
async with semaphore:
file_obj = await self._client.files.create(
file=file,
purpose="assistants",
)
uploaded_files.append(file_obj)
semaphore = asyncio.Semaphore(max_concurrency)
tasks = [asyncio_upload_file(semaphore, file) for file in files]
await asyncio.gather(*tasks)
elif async_library == "trio":
# We only import if the library is being used.
# We support Python 3.7 so are using an older version of trio that does not have type information
import trio # type: ignore # pyright: ignore[reportMissingTypeStubs]
async def trio_upload_file(limiter: trio.CapacityLimiter, file: FileTypes) -> None:
async with limiter:
file_obj = await self._client.files.create(
file=file,
purpose="assistants",
)
uploaded_files.append(file_obj)
limiter = trio.CapacityLimiter(max_concurrency)
async with trio.open_nursery() as nursery:
for file in files:
nursery.start_soon(trio_upload_file, limiter, file) # pyright: ignore [reportUnknownMemberType]
else:
raise RuntimeError(
f"Async runtime {async_library} is not supported yet. Only asyncio or trio is supported",
)
batch = await self.create_and_poll(
vector_store_id=vector_store_id,
file_ids=[*file_ids, *(f.id for f in uploaded_files)],
poll_interval_ms=poll_interval_ms,
chunking_strategy=chunking_strategy,
)
return batch
class FileBatchesWithRawResponse:
def __init__(self, file_batches: FileBatches) -> None:
self._file_batches = file_batches
self.create = _legacy_response.to_raw_response_wrapper(
file_batches.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
file_batches.retrieve,
)
self.cancel = _legacy_response.to_raw_response_wrapper(
file_batches.cancel,
)
self.list_files = _legacy_response.to_raw_response_wrapper(
file_batches.list_files,
)
class AsyncFileBatchesWithRawResponse:
def __init__(self, file_batches: AsyncFileBatches) -> None:
self._file_batches = file_batches
self.create = _legacy_response.async_to_raw_response_wrapper(
file_batches.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
file_batches.retrieve,
)
self.cancel = _legacy_response.async_to_raw_response_wrapper(
file_batches.cancel,
)
self.list_files = _legacy_response.async_to_raw_response_wrapper(
file_batches.list_files,
)
class FileBatchesWithStreamingResponse:
def __init__(self, file_batches: FileBatches) -> None:
self._file_batches = file_batches
self.create = to_streamed_response_wrapper(
file_batches.create,
)
self.retrieve = to_streamed_response_wrapper(
file_batches.retrieve,
)
self.cancel = to_streamed_response_wrapper(
file_batches.cancel,
)
self.list_files = to_streamed_response_wrapper(
file_batches.list_files,
)
class AsyncFileBatchesWithStreamingResponse:
def __init__(self, file_batches: AsyncFileBatches) -> None:
self._file_batches = file_batches
self.create = async_to_streamed_response_wrapper(
file_batches.create,
)
self.retrieve = async_to_streamed_response_wrapper(
file_batches.retrieve,
)
self.cancel = async_to_streamed_response_wrapper(
file_batches.cancel,
)
self.list_files = async_to_streamed_response_wrapper(
file_batches.list_files,
)