-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
160 lines (149 loc) · 5.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import scipy.sparse as sp
import torch
import scipy.io as scio
from sklearn.cluster import KMeans
from sklearn import metrics
from scipy.optimize import linear_sum_assignment
from time import *
def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation."""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return features
def NormalizeFea(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array((features**2).sum(1))
r_inv = np.power(rowsum, -0.5).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return features
def L2_distance(Z):
Z = Z.astype('float64')
num = np.size(Z,0)
AA = np.sum(Z**2,axis=1)
AB = np.matmul(Z,Z.T)
A = np.tile(AA,(num,1))
B = A.T
d = A + B -2*AB
return d
def load_data(dataFile, k, sigma): # {multi-view}
"""Load Multi-view data."""
print('Reading multi-view data...')
data = scio.loadmat(dataFile)
flag = 0
i = 0
for key in data :
i = i + 1
if flag == 0 and (type(data[key]) is np.ndarray) and i==(len(data)-1):
features = data[key][0]
flag = 1
continue
if flag == 1 and (type(data[key]) is np.ndarray) and i==len(data):
labels = data[key]
for i in range(0, len(features)):
try:
features[i] = preprocess_features(features[i].todense().getA())
except:
features[i] = preprocess_features(features[i])
Dist = [] #distance adj
for vIndex in range(0, len(features)):
TempvData = features[vIndex]
NorTempvData = NormalizeFea(TempvData)
tempDM = L2_distance(NorTempvData)
Dist.append(tempDM)
Sim = []
for ii in range(0, len(Dist)):
Sim.append(sparse_mx_to_torch_sparse_tensor(normalize_adj(bs_convert2sim_knn(Dist[ii], k, sigma))))
return Sim, labels
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def spectral(W, k):
"""
SPECTRUAL spectral clustering
:param W: Adjacency matrix, N-by-N matrix
:param k: number of clusters
:return: data point cluster labels, n-by-1 vector.
"""
w_sum = np.array(W.sum(axis=1)).reshape(-1)
D = np.diag(w_sum)
_D = np.diag((w_sum + np.finfo(float).eps)** (-1 / 2))
L = D - W
L = _D @ L @ _D
eigval, eigvec = np.linalg.eig(L)
eigval_argsort = eigval.real.astype(np.float32).argsort()
F = np.take(eigvec.real.astype(np.float32), eigval_argsort[:k], axis=-1)
idx = KMeans(n_clusters=k).fit(F).labels_
return idx
def bestMap(L1,L2):
'''
bestmap: permute labels of L2 to match L1 as good as possible
INPUT:
L1: labels of L1, shape of (N,) vector
L2: labels of L2, shape of (N,) vector
OUTPUT:
new_L2: best matched permuted L2, shape of (N,) vector
version 1.0 --December/2018
Modified from bestMap.m (written by Deng Cai)
'''
if L1.shape[0] != L2.shape[0] or len(L1.shape) > 1 or len(L2.shape) > 1:
raise Exception('L1 shape must equal L2 shape')
return
Label1 = np.unique(L1)
nClass1 = Label1.shape[0]
Label2 = np.unique(L2)
nClass2 = Label2.shape[0]
nClass = max(nClass1,nClass2)
G = np.zeros((nClass, nClass))
for i in range(nClass1):
for j in range(nClass2):
G[j,i] = np.sum((np.logical_and(L1 == Label1[i], L2 == Label2[j])).astype(np.int64))
c,t = linear_sum_assignment(-G)
newL2 = np.zeros(L2.shape)
for i in range(nClass2):
newL2[L2 == Label2[i]] = Label1[t[i]]
return newL2
def bs_convert2sim_knn(dist, K, sigma):
dist = dist/np.max(np.max(dist, 1))
sim = np.exp(-dist**2/(sigma**2))
if K>0:
idx = sim.argsort()[:,::-1]
sim_new = np.zeros_like(sim)
for ii in range(0, len(sim_new)):
sim_new[ii, idx[ii,0:K]] = sim[ii, idx[ii,0:K]]
sim = (sim_new + sim_new.T)/2
else:
sim = (sim + sim.T)/2
return sim
def purity_score(y_true, y_pred):
# compute contingency matrix (also called confusion matrix)
contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
# return purity
return np.sum(np.amax(contingency_matrix, axis=0)) / np.sum(contingency_matrix)
def evaluate(label, pred):
nmi = metrics.normalized_mutual_info_score(label, pred)
acc = np.sum(label == pred)/pred.shape[0]
ari = metrics.adjusted_rand_score(label, pred)
f = metrics.fowlkes_mallows_score(label, pred)
Precision = metrics.precision_score(label, pred, average='macro')
Recall = metrics.recall_score(label, pred, average='macro')
Purity = purity_score(label, pred)
return nmi, acc, ari, f, Precision, Recall, Purity