-
Notifications
You must be signed in to change notification settings - Fork 18
/
graph
326 lines (326 loc) · 12.5 KB
/
graph
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
digraph {
graph [size="43.5,43.5"]
node [align=left fontname=monospace fontsize=10 height=0.2 ranksep=0.1 shape=box style=filled]
140045072830608 [label="
(1, 1, 64, 192, 192)" fillcolor=darkolivegreen1]
140045072661184 [label=GridSampler3DBackward0]
140045072661280 -> 140045072661184
140045072661280 [label=GridSampler3DBackward0]
140045072661040 -> 140045072661280
140045072661040 [label=SqueezeBackward1]
140045072661376 -> 140045072661040
140045072661376 [label=StackBackward0]
140045072661472 -> 140045072661376
140045072661472 [label=SubBackward0]
140045072661664 -> 140045072661472
140045072661664 [label=MulBackward0]
140045072661760 -> 140045072661664
140045072661760 [label=DivBackward0]
140045072661856 -> 140045072661760
140045072661856 [label=CumsumBackward0]
140045072661952 -> 140045072661856
140045072661952 [label=SplitBackward0]
140045072662048 -> 140045072661952
140045072662048 [label=MulBackward0]
140045072662144 -> 140045072662048
140045072662144 [label=SigmoidBackward0]
140045072662240 -> 140045072662144
140045072662240 [label=ConvolutionBackward0]
140045072662336 -> 140045072662240
140045072662336 [label=AsStridedBackward0]
140045072662480 -> 140045072662336
140045072662480 [label=CopySlices]
140044152103072 -> 140045072662480
140044152103072 [label=NativeBatchNormBackward0]
140044152103120 -> 140044152103072
140044152103120 [label=ViewBackward0]
140044152103312 -> 140044152103120
140044152103312 [label=ConvolutionBackward0]
140044152103360 -> 140044152103312
140044152103360 [label=AsStridedBackward0]
140044152103648 -> 140044152103360
140044152103648 [label=CopySlices]
140044152103696 -> 140044152103648
140044152103696 [label=NativeBatchNormBackward0]
140044152103840 -> 140044152103696
140044152103840 [label=ViewBackward0]
140044152104032 -> 140044152103840
140044152104032 [label=ConvolutionBackward0]
140044152104080 -> 140044152104032
140044152104080 [label=AsStridedBackward0]
140044152104368 -> 140044152104080
140044152104368 [label=CopySlices]
140044152104416 -> 140044152104368
140044152104416 [label=NativeBatchNormBackward0]
140044152104560 -> 140044152104416
140044152104560 [label=ViewBackward0]
140044152104752 -> 140044152104560
140044152104752 [label=ConvolutionBackward0]
140044152104800 -> 140044152104752
140044152104800 [label=AsStridedBackward0]
140044152105088 -> 140044152104800
140044152105088 [label=CopySlices]
140044152105136 -> 140044152105088
140044152105136 [label=NativeBatchNormBackward0]
140044152105280 -> 140044152105136
140044152105280 [label=ViewBackward0]
140044152105472 -> 140044152105280
140044152105472 [label=ConvolutionBackward0]
140044152105520 -> 140044152105472
140044152105520 [label=AsStridedBackward0]
140044152105808 -> 140044152105520
140044152105808 [label=CopySlices]
140044152105856 -> 140044152105808
140044152105856 [label=NativeBatchNormBackward0]
140044152106000 -> 140044152105856
140044152106000 [label=ViewBackward0]
140044152106192 -> 140044152106000
140044152106192 [label=ConvolutionBackward0]
140044152106240 -> 140044152106192
140044152106240 [label=MulBackward0]
140044152106528 -> 140044152106240
140044152106528 [label=CatBackward0]
140044152106672 -> 140044152106528
140044152106672 [label=AsStridedBackward0]
140044152106960 -> 140044152106672
140044152106960 [label=CopySlices]
140044152115312 -> 140044152106960
140044152115312 [label=NativeBatchNormBackward0]
140044152115408 -> 140044152115312
140044152115408 [label=ViewBackward0]
140044152115600 -> 140044152115408
140044152115600 [label=ConvolutionBackward0]
140044152115648 -> 140044152115600
140045072633344 [label="encoder._conv_blocks.0.0.weight
(32, 2, 3, 3, 3)" fillcolor=lightblue]
140045072633344 -> 140044152115648
140044152115648 [label=AccumulateGrad]
140044152115504 -> 140044152115600
140045072633424 [label="encoder._conv_blocks.0.0.bias
(32)" fillcolor=lightblue]
140045072633424 -> 140044152115504
140044152115504 [label=AccumulateGrad]
140044152106624 -> 140044152106528
140044152106624 [label=AsStridedBackward0]
140044152106912 -> 140044152106624
140044152106912 [label=CopySlices]
140044152115744 -> 140044152106912
140044152115744 [label=NativeBatchNormBackward0]
140044152115984 -> 140044152115744
140044152115984 [label=ViewBackward0]
140044152116080 -> 140044152115984
140044152116080 [label=ConvolutionBackward0]
140044152106672 -> 140044152116080
140044152116176 -> 140044152116080
140045072633504 [label="encoder._conv_blocks.1.0.weight
(64, 32, 3, 3, 3)" fillcolor=lightblue]
140045072633504 -> 140044152116176
140044152116176 [label=AccumulateGrad]
140044152116128 -> 140044152116080
140045072633584 [label="encoder._conv_blocks.1.0.bias
(64)" fillcolor=lightblue]
140045072633584 -> 140044152116128
140044152116128 [label=AccumulateGrad]
140044152106576 -> 140044152106528
140044152106576 [label=AsStridedBackward0]
140044152115936 -> 140044152106576
140044152115936 [label=CopySlices]
140044152115264 -> 140044152115936
140044152115264 [label=NativeBatchNormBackward0]
140044152116272 -> 140044152115264
140044152116272 [label=ViewBackward0]
140044152116368 -> 140044152116272
140044152116368 [label=ConvolutionBackward0]
140044152106624 -> 140044152116368
140044152116464 -> 140044152116368
140045072633664 [label="encoder._conv_blocks.2.0.weight
(128, 64, 3, 3, 3)" fillcolor=lightblue]
140045072633664 -> 140044152116464
140044152116464 [label=AccumulateGrad]
140044152116416 -> 140044152116368
140045072633744 [label="encoder._conv_blocks.2.0.bias
(128)" fillcolor=lightblue]
140045072633744 -> 140044152116416
140044152116416 [label=AccumulateGrad]
140044152106720 -> 140044152106528
140044152106720 [label=AsStridedBackward0]
140044152116224 -> 140044152106720
140044152116224 [label=CopySlices]
140044152115360 -> 140044152116224
140044152115360 [label=NativeBatchNormBackward0]
140044152116560 -> 140044152115360
140044152116560 [label=ViewBackward0]
140044152116656 -> 140044152116560
140044152116656 [label=ConvolutionBackward0]
140044152106576 -> 140044152116656
140044152116752 -> 140044152116656
140045072691264 [label="encoder._conv_blocks.3.0.weight
(32, 128, 3, 3, 3)" fillcolor=lightblue]
140045072691264 -> 140044152116752
140044152116752 [label=AccumulateGrad]
140044152116704 -> 140044152116656
140045072691344 [label="encoder._conv_blocks.3.0.bias
(32)" fillcolor=lightblue]
140045072691344 -> 140044152116704
140044152116704 [label=AccumulateGrad]
140044152106768 -> 140044152106528
140044152106768 [label=AsStridedBackward0]
140044152116512 -> 140044152106768
140044152116512 [label=CopySlices]
140044152115552 -> 140044152116512
140044152115552 [label=NativeBatchNormBackward0]
140044152116848 -> 140044152115552
140044152116848 [label=ViewBackward0]
140044152116944 -> 140044152116848
140044152116944 [label=ConvolutionBackward0]
140044152106720 -> 140044152116944
140044152117040 -> 140044152116944
140045072691424 [label="encoder._conv_blocks.4.0.weight
(32, 32, 3, 3, 3)" fillcolor=lightblue]
140045072691424 -> 140044152117040
140044152117040 [label=AccumulateGrad]
140044152116992 -> 140044152116944
140045072691504 [label="encoder._conv_blocks.4.0.bias
(32)" fillcolor=lightblue]
140045072691504 -> 140044152116992
140044152116992 [label=AccumulateGrad]
140044152106480 -> 140044152106240
140044152106480 [label=SigmoidBackward0]
140044152106816 -> 140044152106480
140044152106816 [label=ConvolutionBackward0]
140044152116896 -> 140044152106816
140044152116896 [label=ReluBackward0]
140044152117184 -> 140044152116896
140044152117184 [label=ConvolutionBackward0]
140044152117280 -> 140044152117184
140044152117280 [label=MeanBackward1]
140044152106528 -> 140044152117280
140044152117232 -> 140044152117184
140045072691584 [label="d_decoder._se.conv1.weight
(18, 290, 1, 1, 1)" fillcolor=lightblue]
140045072691584 -> 140044152117232
140044152117232 [label=AccumulateGrad]
140044152117088 -> 140044152117184
140045072691664 [label="d_decoder._se.conv1.bias
(18)" fillcolor=lightblue]
140045072691664 -> 140044152117088
140044152117088 [label=AccumulateGrad]
140044152116800 -> 140044152106816
140045072691744 [label="d_decoder._se.conv2.weight
(290, 18, 1, 1, 1)" fillcolor=lightblue]
140045072691744 -> 140044152116800
140044152116800 [label=AccumulateGrad]
140044152116320 -> 140044152106816
140045072691824 [label="d_decoder._se.conv2.bias
(290)" fillcolor=lightblue]
140045072691824 -> 140044152116320
140044152116320 [label=AccumulateGrad]
140044152106096 -> 140044152106192
140045072691904 [label="d_decoder._convs.0.0.weight
(128, 290, 3, 3, 3)" fillcolor=lightblue]
140045072691904 -> 140044152106096
140044152106096 [label=AccumulateGrad]
140044152106336 -> 140044152106192
140045072691984 [label="d_decoder._convs.0.0.bias
(128)" fillcolor=lightblue]
140045072691984 -> 140044152106336
140044152106336 [label=AccumulateGrad]
140044152105376 -> 140044152105472
140045072692064 [label="d_decoder._convs.1.0.weight
(64, 128, 3, 3, 3)" fillcolor=lightblue]
140045072692064 -> 140044152105376
140044152105376 [label=AccumulateGrad]
140044152105616 -> 140044152105472
140045072692144 [label="d_decoder._convs.1.0.bias
(64)" fillcolor=lightblue]
140045072692144 -> 140044152105616
140044152105616 [label=AccumulateGrad]
140044152104656 -> 140044152104752
140045072692224 [label="d_decoder._convs.2.0.weight
(32, 64, 3, 3, 3)" fillcolor=lightblue]
140045072692224 -> 140044152104656
140044152104656 [label=AccumulateGrad]
140044152104896 -> 140044152104752
140045072692304 [label="d_decoder._convs.2.0.bias
(32)" fillcolor=lightblue]
140045072692304 -> 140044152104896
140044152104896 [label=AccumulateGrad]
140044152103936 -> 140044152104032
140045072692384 [label="d_decoder._convs.3.0.weight
(32, 32, 3, 3, 3)" fillcolor=lightblue]
140045072692384 -> 140044152103936
140044152103936 [label=AccumulateGrad]
140044152104176 -> 140044152104032
140045072692464 [label="d_decoder._convs.3.0.bias
(32)" fillcolor=lightblue]
140045072692464 -> 140044152104176
140044152104176 [label=AccumulateGrad]
140044152103216 -> 140044152103312
140045072692544 [label="d_decoder._convs.4.0.weight
(32, 32, 3, 3, 3)" fillcolor=lightblue]
140045072692544 -> 140044152103216
140044152103216 [label=AccumulateGrad]
140044152103456 -> 140044152103312
140045072692624 [label="d_decoder._convs.4.0.bias
(32)" fillcolor=lightblue]
140045072692624 -> 140044152103456
140044152103456 [label=AccumulateGrad]
140045072662288 -> 140045072662240
140045072692704 [label="d_decoder._convs.5.weight
(3, 32, 3, 3, 3)" fillcolor=lightblue]
140045072692704 -> 140045072662288
140045072662288 [label=AccumulateGrad]
140045072661568 -> 140045072662240
140045072692784 [label="d_decoder._convs.5.bias
(3)" fillcolor=lightblue]
140045072692784 -> 140045072661568
140045072661568 [label=AccumulateGrad]
140045072661424 -> 140045072661376
140045072661424 [label=SubBackward0]
140045072661808 -> 140045072661424
140045072661808 [label=MulBackward0]
140045072662000 -> 140045072661808
140045072662000 [label=DivBackward0]
140045072662192 -> 140045072662000
140045072662192 [label=CumsumBackward0]
140045072661952 -> 140045072662192
140045072661088 -> 140045072661376
140045072661088 [label=SubBackward0]
140045072662096 -> 140045072661088
140045072662096 [label=MulBackward0]
140045072662384 -> 140045072662096
140045072662384 [label=DivBackward0]
140045072661616 -> 140045072662384
140045072661616 [label=CumsumBackward0]
140045072661952 -> 140045072661616
140045072661232 -> 140045072661184
140045072661232 [label=AffineGridGeneratorBackward0]
140045072661520 -> 140045072661232
140045072661520 [label=ViewBackward0]
140045072662432 -> 140045072661520
140045072662432 [label=ConvolutionBackward0]
140045072661712 -> 140045072662432
140045072661712 [label=MeanBackward1]
140044152106528 -> 140045072661712
140045072660896 -> 140045072662432
140045072692864 [label="a_decoder._conv.weight
(12, 290, 1, 1, 1)" fillcolor=lightblue]
140045072692864 -> 140045072660896
140045072660896 [label=AccumulateGrad]
140044152103264 -> 140045072662432
140045072692944 [label="a_decoder._conv.bias
(12)" fillcolor=lightblue]
140045072692944 -> 140044152103264
140044152103264 [label=AccumulateGrad]
140045072661184 -> 140045072830608
140045072694384 [label="
(1, 3, 64, 192, 192)" fillcolor=darkolivegreen1]
140045072662048 -> 140045072694384
140045072830848 [label="
(1, 3, 4)" fillcolor=darkolivegreen1]
140045072661520 -> 140045072830848
140045072830768 [label="
(1, 12, 1, 1, 1)" fillcolor=darkolivegreen3]
140045072662432 -> 140045072830768
140045072830768 -> 140045072830848 [style=dotted]
}