
NPD: Metrics Exporting Option
Status: Draft | ​Under review​ | In progress | Done

Authors: ​xueweiz@google.com
Last Updated: 2019-05-21

Audience

Why NPD needs metrics exporting
1. Some problems are better detected at fleet level
2. NPD’s dependency on apiserver limits its use cases

Proposal
Goal
Overview
Detailed Design

Detailed NPD architecture
Core Data Representation Model

Intuitive view of how the transition looks like on Kubernetes
Extendable Exporters
Metrics Collection Design
Collecting System Stats
Extending Today’s Problem Daemon to Report Metrics
More Pluggable Problem Daemon

Audience
This doc is for the maintainers/contributors of the open source Kubernetes project ​node problem
detector​ (NPD). For more background on NPD, the ​README​ and the ​design doc V0​ are some
good source.

Why NPD needs metrics exporting
Today’s ​node problem detector​ (NPD) only exports node problems to Kubernetes’ ​Event​ and
Node Condition​ API by ​design​. This design faces a few challenges:

1. Some problems are better detected at fleet level
We want to have a common mechanism to collect basic VM metrics that are useful to diagnose
node problems. Such diagnosis may need VM metrics to be associated with other signals
collected outside the VM to determine whether it is indeed a node problem. For this reason, we
just want to implement generic metric collection in NPD instead of using these signals to directly
determine node problems as we are currently doing through ​Node Conditions​/​Events​.

mailto:xueweiz@google.com
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector/tree/v0.6.3#node-problem-detector
https://docs.google.com/document/d/1cs1kqLziG-Ww145yN6vvlKguPbQQ0psrSBnEqpy0pzE/edit
https://github.com/kubernetes/node-problem-detector
https://kubernetes.io/docs/tasks/debug-application-cluster/events-stackdriver/
https://kubernetes.io/docs/concepts/architecture/nodes/#condition
https://docs.google.com/document/d/1cs1kqLziG-Ww145yN6vvlKguPbQQ0psrSBnEqpy0pzE/edit#
https://kubernetes.io/docs/concepts/architecture/nodes/#condition
https://kubernetes.io/docs/tasks/debug-application-cluster/events-stackdriver/

2. NPD’s dependency on apiserver limits its use cases
We want to be less dependent on k8s control plane so that we can effectively monitor k8s
control plane health. Relying on Events/Node Conditions API makes that very hard.

Proposal

Goal
● Give NPD options to report problems and raw system data (e.g. disk IO queue length) in

the form of ​metrics​.
● Give NPD options to export metrics locally (i.e. ​Prometheus​).
● Allow easy extensibility of exporting data to other monitoring/alerting systems.
● NPD should maintain backward compatibility with current NPD plugins.

Overview
A few changes will be made to NPD to adopt the metrics mode:

1. We will refactor the data model that NPD uses to represent problems (i.e. ​Status​, which
was inherited from Events/Node Conditions API and is not generic enough). The new
data model will represent node problems in a generic format that do not have platform
dependency. Of course the problems can still be converted into Events and Node
Conditions.

2. We will implement flexible exporter plugin registration and configuration, allowing users
to use any subset of exporters (e.g. Kubernetes exporter, Prometheus exporter, etc).

3. We will allow NPD core to collect metrics from problem daemons and export locally.
4. We will implement some problem daemons to collect various health-related system stats.
5. We will extend today’s problem daemons so that they can report metrics with little config

change.
6. We will refactor the code for problem daemon registration, to make it more modular and

pluggable.

The overview of the new NPD architecture would look like this (details are in ​below section​):

https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/introduction/overview/
https://github.com/kubernetes/node-problem-detector/blob/6221508fcb3ea06f8aee9b2b013e5b6eaa742801/pkg/types/types.go#L81

Detailed Design

Detailed NPD architecture
The new NPD architecture would look like below:

Core Data Representation Model
We want to use some minimum set of fundamental data representations to represent node
health, which will be the core representations that NPD works with. To interact with various
control planes (Events/Node Conditions API in Kubernetes, Prometheus, other monitoring
systems, etc), exporters should be responsible for converting the core representations to the
control plane format.

Here is the proposed core data representation model:
Metric​: Represents a dimension of the current healthiness of the system.
Problem​: Represents the debugging information regarding a detected or suspected node
problem.

Here is an example ​problem​ object:

{

 "severity":"permanent",

 "timestamp":"2012-10-31 15:50:13.793654 +0000 UTC",

 "type":"KernelDeadlock",

 "reason":"AUFSUmountHung",

 "message":"[...]task umount.aufs:xxxx blocked for more than 180

seconds.[...]"

}

For metrics, we plan to delegate the aggregation and reporting work to some vendor-neutral
generic metric library (e.g. ​Prometheus​, ​OpenCensus​). That’s why the "Metric Manager" box in
the NPD architecture graph is dotted box.
The format of the metric will depend on what library we use. Let’s take disk IO queue length as
an example. It should eventually be reported as a metrics like this (shown in Prometheus
format):

disk_queue_len{"device": "/dev/sda1"} 133

And here is how we would define it in OpenCensus library:

// keyDevice defines a ​TagKey​, which is essentially converted to a
metric label​. e.g. {"device": "/dev/sda1"}
keyDevice, _ = tag.NewKey("device")

// mQueueLen defines a ​Measure​.
// Whenever a new data point is collected, a ​Measurement​ should be made
to this measure via:

// stats.Record(ctx, mQueueLen.M(133))

mQueueLen = stats.Int64("disk-queue-len", "The disk IO queue length",

"1")

// vDiskQueueLen defines a ​View​.
// The view specifies how should measurements be aggregated over time.

// i.e. should we add them together? should we take the last value?

//

// In this example,

// "disk-queue-len" is the metric name that eventually will be shown to

the users.

// mQueueLen specifies the measure.

// "The disk IO queue length" is the helper text that will be shown to

the users.

https://godoc.org/github.com/prometheus/client_golang/prometheus
https://opencensus.io/stats/view/
https://opencensus.io/tag/key/
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
https://opencensus.io/stats/measure/#measure
https://opencensus.io/stats/measurement/
https://opencensus.io/stats/view/

// []tag.Key{keyDevice} specifies that this metric has a "device" label.

// view.LastValue() specifies that we want the last measurement to

overwrite previous measurements.

vDiskQueueLen = &view.View{

Name: "disk-queue-len",

Measure: mQueueLen,

Description: "The disk IO queue length",

TagKeys: []tag.Key{keyDevice},

Aggregation: view.LastValue(),

}

So when a real data point comes, all that’s needed to report the measurement:

ctx, _ := tag.New(context.Background(), tag.Insert(keyDevice,

"/dev/sda1"))

stats.Record(ctx, mQueueLen.M(133))

All the aggregation and exporting will happen automatically afterwards.

Eventually, all data reported from ​problem daemons​ should be collected by NPD core in the
form of ​metrics​ and ​problems​.

Intuitive view of how the transition looks like on Kubernetes
Today, when NPD detects a ​permanent problem​ that makes the node unavailable for pods, it
will set a Node Condition, e.g.:

{

 "type":"KernelDeadlock",

 "status":"True",

 "transition":"2012-10-31 15:50:13.793654 +0000 UTC",

 "reason":"AUFSUmountHung",

 "message":"[...]task umount.aufs:xxxx blocked for more than 180

seconds.[...]"

}

And when NPD detects a ​temporary problem​ that has limited impact on pod but is informative, it
will report an event, e.g.:

{

 "severity":"warn",

 "timestamp":"2012-10-31 15:50:13.793654 +0000 UTC",

https://github.com/kubernetes/node-problem-detector/blob/v0.6.3/README.md#problem-daemon
https://github.com/kubernetes/node-problem-detector/blob/v0.6.3/README.md#problem-api
https://github.com/kubernetes/node-problem-detector/blob/v0.6.3/README.md#problem-api

 "reason":"OOMKilling",

 "message":"[...]Kill process 677 dockerd…[...]"

}

After the proposed changes, both permanent problems and temporary problems will be
presented as “problems” in NPD core:

{

 "severity":"permanent",

 "timestamp":"2012-10-31 15:50:13.793654 +0000 UTC",

 "type":"KernelDeadlock",

 "reason":"AUFSUmountHung",

 "message":"[...]task umount.aufs:xxxx blocked for more than 180

seconds.[...]"

}

{

 "severity":"temporary",

 "timestamp":"2012-10-31 15:50:13.793654 +0000 UTC",

 "type":"",

 "reason":"OOMKilling",

 "message":"[...]Kill process 677 dockerd…[...]"

}

Node health status of interest can be reported as metrics as well. Say if we are interested in
tracking both problems above, an option is to show them as ​counter metrics​, and put the
problem type in the metric labels (shown as Prometheus format):
problem_counter{"name": "KernelDeadlock", "reason": "AUFSUmountHung"} 1

problem_counter{"name": "OOMKilling"} 2
Basically the problem type will be shown in metric labels.

And Kubernetes exporter will export these problems to Kubernetes in the form of Events / Node
Conditions:

{

 "severity":"warn",

 "timestamp":"2012-10-31 15:50:13.793654 +0000 UTC",

 "reason":"KernelDeadlock-AUFSUmountHung",

 "message":"[...]task umount.aufs:xxxx blocked for more than 180

seconds.[...]"

}

https://prometheus.io/docs/concepts/metric_types/#counter

{

 "severity":"warn",

 "timestamp":"2012-10-31 15:50:13.793654 +0000 UTC",

 "reason":"OOMKilling",

 "message":"[...]Kill process 677 dockerd…[...]"

}

Extendable Exporters
The new NPD design features configurable/plugable exporters. Users may pick a set of
exporters to use according to the environment the node runs in, and exporters will be registered
to the NPD core. All exporters should have an option to be disabled at compile time (to keep
NPD small).

Initially, we plan to introduce below exporters:

● k8s-exporter: reports problems as Node Conditions and Events.
● journal-exporter: reports problems to systemd-journald.
● prometheus-exporter: reports metrics locally in Prometheus format.

Note that k8s-exporter and journal-exporter practically already exist today, since NPD already
logs problems locally as well as reports to Kubernetes apiserver. We just need some refactoring
on them to adopt the new model.

More exporter plugins can be added in the future to support other environments.

Metrics Collection Design
We plan to use ​OpenCensus​ library for the metrics collection. OpenCensus supports flexible
metrics ​collection​, ​aggregation​ and ​exporting​ ability.

Under the OpenCensus library, the end-to-end experience of adding a metrics looks like this:

1. Define a measurement, which could be a counter (e.g. NPD uptime), a diff (e.g. number
of crashes in last minute), a gauge (e.g. disk bandwidth in last minute), etc…

2. Define a view from the measurement, which specifies the method for aggregating the
measurement. For example count, sum, or overwrite last value.

3. Attach an exporter, which could be Prometheus, Datadog, Stackdriver, etc…
4. When the problem daemon has a data point (e.g.number of crashes in last minute), the

problem daemon only need to report the data point to the measurement.
5. OpenCensus library then handles the aggregation and exporting work.

https://opencensus.io/
https://opencensus.io/stats/measure/
https://opencensus.io/stats/view/
https://opencensus.io/exporters/supported-exporters/go/

Using OpenCensus library saves us the burden of implementing the “Metric Manager”
component in the ​new architecture​. And comparing to Prometheus library, OpenCensus has the
advantage of the ​built-in exporter support​ for many control planes.

Collecting System Stats
As part of this work, we will make problem daemons to collect various system stats that are
important to machine health, e.g. some stats in /proc/meminfo, /proc/slabinfo, etc. But we’d like
to avoid writing code to parse through these files, because the parsing logic may be platform
dependant and very error-prone.

Our plan is to use the ​gopsutil​ library inside the problem daemons to handle all the parsing
logic.

Extending Today’s Problem Daemon to Report Metrics
Users have requested to add support for Prometheus metrics, see this ​GitHub issue​. It is very
useful if all currently detected problems can also be reported in metrics form:

● It allows various alerting systems to plug into the monitoring backend and create alerts.
● It allows people to use NPD to monitor Kubernetes master node as well.

And of course, we hope that the additional metrics support does not require users to change
their existing config files (​examples​).

Our current proposal is to convert all problems into ​counters​ on currently supported problem
daemons ​by default​:
problem_counter{"name": "KernelDeadlock"} 0

problem_counter{"name": "DockerRestart"} 17

This can be done by extending the System Log Monitor and Custom Plugin Monitor a little bit.
Today when problem daemons detect node problems, they will report a ​Status​ object to NPD
core, which contains a list of detected problems. We just need to add a small logic in the
problem daemons, to make them also report a number indicating how many new problems has
happened. And the measurement will automatically be added up and reported.

And we plan to support some more customized behaviors using the config file. For example:

● Report the metric as ​gauge​, rather than ​counter​.
● Allow user to change the metric name.
● ...

This way, people can then build queries and create alerts based on these metrics, and reuse all
their current NPD configurations. And when they need more customized metrics, they can
change the config file to do that.

https://opencensus.io/exporters/supported-exporters/go/
https://github.com/shirou/gopsutil
https://github.com/kubernetes/node-problem-detector/issues/259
https://github.com/kubernetes/node-problem-detector/tree/v0.6.3/config
https://prometheus.io/docs/concepts/metric_types/#counter
https://github.com/kubernetes/node-problem-detector/blob/6221508fcb3ea06f8aee9b2b013e5b6eaa742801/pkg/types/types.go#L81
https://prometheus.io/docs/concepts/metric_types/#gauge
https://prometheus.io/docs/concepts/metric_types/#counter

More Pluggable Problem Daemon
Today NPD only supports two types of problem daemon, and part of their initialization logic is
hardcoded​ in NPD’s main function.

In the future, since we are allowing NPD to do more data collection from various places (i.e.
disk/CPU/memory/network/entropy), we expect more problem daemons to be added. Specific
initialization for every problem daemon in main function won’t be scalable.

We plan to allow problem daemon registration, and unify the initialization logic. Basically each
problem daemon will have an initialization handler like this:
func NewFooMonitor(configPath string) types.Monitor

Problem daemons should register their initialization handler using the ​init()​ function, which will
construct a map mapping problem daemon names to the initialization handlers:
map[string]func(string) types.Monitor

So NPD core does not need any logic about the problems daemons, it will just need to parse the
NPD options to get the name and config file path of the problem daemons, and then use the
initialization handlers to initialize them.

This flexible problem daemon registration is also useful if people want to maintain custom
problem daemons that must be compiled together with NPD:

● The custom problem daemons may not be suitable for the OSS NPD project because of
vendor/platform specific logic, private APIs, etc.

● The custom problem daemons may not fit with the custom plugin monitor. In which case
it must be compiled into NPD.

With a flexible problem daemon registration, these users would have the option to first fork NPD
and maintain a list of problem daemons in their repository, and then do periodic rebase on top of
NPD master without significant merge conflicts.

https://github.com/kubernetes/node-problem-detector/blob/4880be842d32dfcf31d2a8f01070d17473732a88/cmd/node_problem_detector.go#L72
https://golang.org/doc/effective_go.html#init

