-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtinyimagenet_exec.sh
133 lines (78 loc) · 6.64 KB
/
tinyimagenet_exec.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
## REBUTTAL
# Final run on full data
# # NOTE: make sure to delete/comment subfolder from the config file or else it may not work
conf_file="configs/param_tuning/tinyimgnet/resnet50_0_5/conf1"
conf_end=".yml"
log_root="tinyimagenet_resnet50_0_5_"
log_end="_log"
subfolder_root="tinyimagenet_resnet50_0_5_"
for trial in 1
do
python main.py \
--config "$conf_file$conf_end" \
--trial-num $trial \
--use-full-data \
--subfolder "$subfolder_root$trial" > "$log_root$trial$log_end" 2>&1 &
python main.py \
--config "$conf_file$conf_end" \
--trial-num $trial \
--invert-sanity-check \
--use-full-data \
--skip-sanity-checks \
--subfolder "invert_$subfolder_root$trial" > "invert_$log_root$trial$log_end" 2>&1 &
done
# TinyImageNet, ResNet-50
# Weight training
#python main.py --config configs/training/resnet50/tiny_resnet50_training_adam_001_multi.yml > log_tiny_res50_wt_adam_001_multi 2>&1 # this is current best
#python main.py --config configs/training/resnet50/tiny_resnet50_training_adam_001_cosine.yml > log_tiny_res50_wt_adam_001_cosine 2>&1 # this is current best
#python main.py --config configs/training/resnet50/tiny_resnet50_training_adam_0001_cosine.yml > log_tiny_res50_wt_adam_0001_cosine 2>&1 # this is current best
#python main.py --config configs/training/resnet50/tiny_resnet50_training_sgd_multi.yml > log_tiny_res50_wt_sgd_multi 2>&1 # this is current best
#python main.py --config configs/training/resnet50/tiny_resnet50_training_adam_short.yml > log_tiny_res50_wt_adam_short 2>&1 # this is current best
#python main.py --config configs/training/resnet50/tiny_resnet50_training_adam.yml > log_tiny_res50_wt_adam 2>&1 # this is current best
# TinyImageNet, ResNet-101
## Weight training
#python main.py --config configs/training/resnet101/tiny_resnet101_training.yml > log_tiny_res101_wt_adam 2>&1 # this is current best
#python main.py --config configs/training/resnet101/tiny_resnet101_training_300.yml > log_tiny_res101_wt_adam_300 2>&1 # this is current best
#python main.py --config configs/training/resnet101/tiny_resnet101_training.yml > log_tiny_res101_wt 2>&1 # this is current best
## HC
#python main.py --config configs/hypercube/tinyImageNet/resnet101/resnet101_sparsity_5.yml > log_tiny_res101_hc_sparsity_5 2>&1
## EP
#python main.py --config configs/ep/tinyImageNet/resnet101/resnet101_sparsity_5.yml > log_tiny_res101_ep_sparsity_5 2>&1
#python main.py --config configs/ep/tinyImageNet/resnet101/resnet101_sparsity_50.yml > log_tiny_res101_ep_sparsity_50 2>&1
# TinyImageNet, ResNet-18
# Weight training
#python main.py --config configs/training/resnet18/tiny_resnet18_training_preproc2_v3.yml #> log_tiny_wt_p2_v3 2>&1 # this is current best: 49.59%
# HC
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_50_sgd_5.yml > log_tiny_hc_sparsity_50_sgd_5 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_50_sgd_25.yml > log_tiny_hc_sparsity_50_sgd_25 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_50_adam_5.yml > log_tiny_hc_sparsity_50_adam_5 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_50_adam_25.yml > log_tiny_hc_sparsity_50_adam_25 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_5_sgd_lam8.yml #> log_tiny_hc_sparsity_5_sgd_lam8 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_5_sgd_lam8_T10.yml #> log_tiny_hc_sparsity_5_sgd_lam8 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_50_sgd_lam0_T10.yml > log_tiny_hc_sparsity_50_sgd_lam0_T10 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_20_sgd_lam8_T10.yml > log_tiny_hc_sparsity_20_sgd_lam8_T10 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_1_4_sgd_lam7_T10.yml > log_tiny_hc_sparsity_1_4_sgd_lam7_T10 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_50_sgd_lam0_unflag_F.yml > log_tiny_hc_sparsity_50_sgd_lam0_unflag_F 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_20_sgd_lam6_unflag_F.yml > log_tiny_hc_sparsity_20_sgd_lam6_unflag_F 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_20_sgd_lam5_unflag_F.yml > log_tiny_hc_sparsity_20_sgd_lam5_unflag_F 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_5_sgd_lam4_unflag_F.yml > log_tiny_hc_sparsity_5_sgd_lam4_unflag_F 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_5_sgd_5lam6_unflag_F.yml > log_tiny_hc_sparsity_5_sgd_5lam6_unflag_F 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_20_sgd_3lam6_unflag_F.yml > log_tiny_hc_sparsity_20_sgd_3lam6_unflag_F 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_5_adam_8lam6.yml > log_tiny_hc_sparsity_5_adam_8lam6 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_1_4_adam_9lam6.yml #> log_tiny_hc_sparsity_1_4_adam_9lam6 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_50_adam.yml > log_tiny_hc_sparsity_50_adam 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_5_adam_1lam6.yml > log_tiny_hc_sparsity_5_adam_1lam6 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_1_4_adam_5lam6.yml > log_tiny_hc_sparsity_1_4_adam_5lam6 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_0_5_adam_1lam5.yml > log_tiny_hc_sparsity_0_5_adam_1lam5 2>&1
#python main.py --config configs/hypercube/tinyImageNet/resnet18/resnet18_sparsity_0_5_sgd_1_5lam5.yml > log_tiny_hc_sparsity_0_5_sgd_1_5lam5 2>&1
# EP
#:<<BLOCK
#python main.py --config configs/ep/tinyImageNet/resnet18/sparsity_5.yml > log_tiny_ep_sparsity_5 2>&1
#python main.py --config configs/ep/tinyImageNet/resnet18/sparsity_50.yml > log_tiny_ep_sparsity_50 2>&1
#python main.py --config configs/ep/tinyImageNet/resnet18/sparsity_100.yml > log_tiny_ep_sparsity_100 2>&1
#python main.py --config configs/ep/tinyImageNet/resnet18/sparsity_1_4.yml > log_tiny_ep_sparsity_1_4 2>&1
#python main.py --config configs/ep/tinyImageNet/resnet18/sparsity_20.yml > log_tiny_ep_sparsity_20 2>&1
#BLOCK
#python main.py --config configs/ep/tinyImageNet/resnet18/sparsity_0_75.yml > log_tiny_ep_sparsity_0_75 2>&1
# testing mixed precision
#python main.py --config configs/training/resnet18/tiny_resnet18_training_test_MP.yml #> log_tiny_wt_p2_v3 2>&1