-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathargs_helper.py
987 lines (964 loc) · 32.2 KB
/
args_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
import argparse
import sys
import yaml
from configs import parser as _parser
global parser_args
class ArgsHelper:
def parse_arguments(self, jupyter_mode=False):
parser = argparse.ArgumentParser(description="Pruning random networks")
# Config/Hyperparameters
parser.add_argument(
"--data",
default="data/datasets/",
help="path to dataset base directory"
)
parser.add_argument(
"--log-dir",
default=None,
help="Where to save the runs. If None use ./runs"
)
parser.add_argument(
"--name",
default=None,
type=str,
help="Name of experiment"
)
parser.add_argument(
"--config",
default='configs/hypercube/resnet20/resnet20_quantized_iter_hc_target_sparsity_1_4_highreg.yml',
help="Config file to use"
)
parser.add_argument(
"--batch-size",
type=int,
default=64,
metavar="N",
help="Input batch size for training (default: 64)"
)
parser.add_argument(
"--epochs",
type=int,
default=10,
metavar="N",
help="Number of epochs to use in training (default: 10)"
)
parser.add_argument(
"--submask-size",
type=int,
default=1,
metavar="S",
help="Size of random 0/1 submask to create among a random set of weights in the network (default: 1)"
)
parser.add_argument(
"--metric",
type=str,
default="loss",
metavar="M",
help="Metric used to determine whether a weight or activation should be pruned (default: \"loss\")"
)
parser.add_argument(
"--pruning-strategy",
type=str,
default=None,
metavar="PS",
help="Strategy for pruning. Can be \"weights\", \"activations\", \"activations_and_weights\", \"simulated_annealing\", or None. If None, train a model via vanilla SGD (default: None)"
)
parser.add_argument(
"--how-to-prune",
type=str,
default="random",
help="How the pruning strategy will be executed. Can be \"random\", \"random_with_replacement\", \"layer\", or \"layer_reversed.\" This argument has changes how the weights or activations in the network are selected for pruning. \"random\" will choose the weights/activations without replacement, \"random_with_replacement\" will choose the weights/activations with replacement, and \"layer\" will choose every weight/activation in the network in layer by layer, and \"layer_reversed\" is the same as \"layer,\" but will start with the last layer and move to the first (default: \"random\")"
)
parser.add_argument(
"--start-from-nothing",
action="store_true",
default=False,
help="Prunes all weights in the network, but leaves one weight per layer to connect the input layer to the output layer. Only applies to masked layers (default: False)"
)
parser.add_argument(
"--flips",
type=list,
default=None,
nargs="+",
metavar="R",
help="List of epoch indices (starting from and including 0) where flipping occurs. At each milestone, 10% of the mask parameters are randomly chosen and they are flipped. Restarting is accomplished at the beginning of an epoch. Applies only when pruning weights (default: None)"
)
parser.add_argument(
"--lr",
type=float,
default=0.001,
metavar="LR",
help="Learning rate (default: 0.001)"
)
parser.add_argument(
"--lr-policy",
type=str,
default=None,
help="Learning rate scheduler"
)
parser.add_argument(
"--lr-gamma",
type=float,
default=0.1,
help="Multistep lr decay ratio (default: 0.1)"
)
parser.add_argument(
"--lr-adjust",
type=int,
default=50,
help="Multistep lr decay period (default: 50)"
)
parser.add_argument(
"--momentum",
type=float,
default=0.9,
metavar="M",
help="Momentum (default: 0.9)"
)
parser.add_argument(
"--wd",
type=float,
default=0.0005,
metavar="WD",
help="Weight decay (default: 0.0005)"
)
parser.add_argument(
"--nesterov",
type=bool,
default=False,
metavar="N",
help="Nesterov acceleration (default: False)"
)
parser.add_argument(
"--milestones",
type=list,
default=[50, 100, 150, 200],
nargs="+",
metavar="M",
help="List of milestones where learning rate is multiplied by args.gamma (default: [50, 100, 150, 200])"
)
parser.add_argument(
"--gamma",
type=float,
default=0.1,
metavar="G",
help="Multiplicative factor to reduce the learning rate at every milestone (default: 0.1)"
)
parser.add_argument(
"--td",
type=float,
default=0.99,
metavar="TD",
help="Temperature decay constant for simulated annealing (default: 0.99)"
)
parser.add_argument(
"--temp",
type=int,
default=100000,
metavar="T",
help="Temperature used in simulated annealing (default: 100000)"
)
parser.add_argument(
"--max-iter",
type=int,
default=100000,
metavar="MI",
help="Maximum number of iterations to run simulated annealing for before terminating. It's recommended to set this to a value that at is at least as big as the number of parameters in the network (default: 100000)"
)
parser.add_argument(
"--algo",
type=str,
default='ep',
help="pruning algo to use |ep|pt_hack|pt_reg|hc|ep+greedy|greedy+ep|hc_iter|global_ep|global_ep_iter|imp"
)
parser.add_argument(
"--iter_start",
type=int,
default=0,
help="starting epoch for iterative pruning"
)
parser.add_argument(
"--iter-period",
type=int,
default=5,
help="period [epochs] for iterative pruning"
)
parser.add_argument(
"--optimizer",
type=str,
default='sgd',
help="optimizer option to use |sgd|adam|"
)
parser.add_argument(
'--evaluate-only',
action='store_true',
default=False,
help='just use rounding techniques to evaluate a saved model'
)
parser.add_argument(
"--round",
type=str,
default='naive',
help='rounding technique to use |naive|prob|pb|'
# naive: threshold(0.5), prob: probabilistic rounding, pb: pseudo-boolean paper's choice (RoundDown)
)
parser.add_argument(
'--noise',
action='store_true',
default=False,
help='flag that decides if we add noise to the rounded p_i'
)
parser.add_argument(
"--noise-ratio",
type=float,
default=0.0,
help="portion of score flipping"
)
parser.add_argument(
"--score-init",
type=str,
default="unif",
help="initial score for hypercube |unif|bern|"
)
parser.add_argument(
"--interpolate",
type=str,
default="prob",
help="way of interpolating masks/weights |prob|linear|"
)
parser.add_argument(
'--plot-hc-convergence',
action='store_true',
default=False,
help='flag that decides if we plot convergence of hc'
)
parser.add_argument(
"--hc-warmup",
default=9999,
type=int,
help="warmup epochs for hypercube"
)
parser.add_argument(
"--hc-period",
default=1,
type=int,
help="rounding period for hypercube"
)
parser.add_argument(
"--num-round",
type=int,
default=1,
help='number of different models testing in rounding'
)
# do we need it?
parser.add_argument(
"--num-test",
type=int,
default=1,
help='number of different models testing in prob rounding'
)
parser.add_argument(
"--save-model",
action='store_true',
default=False,
help='For Saving the current Model'
)
# Architecture and training
parser.add_argument(
"--arch",
type=str,
default="TwoLayerFC",
# KS: gotta find a better way to do this. causing circular import issues
# help="Model architecture: " + " | ".join(models.__dict__["__all__"]) + " | (default: TwoLayerFC)"
)
parser.add_argument(
"--width",
type=float,
default=1.0,
help="portion of additional width compared with original width"
)
parser.add_argument(
"--hidden-size",
type=int,
default=500,
metavar="H",
help="Number of nodes in the FC layers of the network"
)
parser.add_argument(
"--bias",
action="store_true",
default=False,
help="Boolean flag to indicate whether to use bias"
)
parser.add_argument(
"--freeze-weights",
action="store_true",
default=True,
help="Boolean flag to indicate whether weights should be frozen. Used when sparsifying (default: False)"
)
parser.add_argument(
"--conv-type",
type=str,
default=None,
help="What kind of sparsity to use"
)
parser.add_argument(
"--mode",
default="fan_in",
help="Weight initialization mode"
)
parser.add_argument(
"--nonlinearity",
default="relu",
help="Nonlinearity used by initialization"
)
parser.add_argument(
"--bn-type",
default=None,
help="BatchNorm type"
)
parser.add_argument(
"--init",
default="kaiming_normal",
help="Weight initialization modifications"
)
parser.add_argument(
"--no-bn-decay",
action="store_true",
default=False,
help="No batchnorm decay"
)
parser.add_argument(
"--scale-fan",
action="store_true",
default=False,
help="scale fan"
)
parser.add_argument(
"--first-layer-dense",
action="store_true",
help="First layer dense or sparse"
)
parser.add_argument(
"--dense-training",
action="store_true",
help="Train the network without pruning, and checkpoint along the way"
)
parser.add_argument(
"--last-layer-dense",
action="store_true",
help="Last layer dense or sparse"
)
parser.add_argument(
"--label-smoothing",
type=float,
help="Label smoothing to use, default 0.0",
default=None,
)
parser.add_argument(
"--first-layer-type",
type=str,
default=None,
help="Conv type of first layer"
)
parser.add_argument(
"--trainer", type=str, default="default", help="cs, ss, or standard training"
)
parser.add_argument(
"--score-init-constant",
type=float,
default=None,
help="Sample Baseline Subnet Init",
)
# represents percentage of weights THAT REMAIN each time ep, global_ep
# whereas it represents number of weights TO PRUNE when calling prune()
parser.add_argument(
"--prune-rate",
default=0.5,
help="Decides number of weights that REMAIN after sparse training.",
type=float,
)
parser.add_argument( # add for bottom K iterative pruning
"--prune-type",
default="FixThresholding",
help="Type of prune - fix thresholding (FixTHresholding), or prune bottem k percent (BottomK)",
type=str,
)
parser.add_argument(
"--dataset",
type=str,
default="MNIST",
help="Dataset to train the model with. Can be CIFAR10 or MNIST (default: MNIST)"
)
parser.add_argument(
"--loss",
type=str,
default="cross-entropy-loss",
help="which loss to use for pruning: cross-entropy-loss or zero-one-loss"
)
# # Save/Load
# parser.add_argument(
# "--save-dir",
# type=str,
# default=False,
# help="Directory to save the results of the experiment (default: \"./results\")"
# )
parser.add_argument(
"--save-plot-data",
action="store_true",
default=False,
help="Boolean flag to indicate whether to save training data for plotting. The following data will be saved at every epoch: top-1 training set accuracy, top-1 validation set accuracy, epoch number (default: False)"
)
parser.add_argument(
"--data-dir",
type=str,
default="../data",
help="Directory of dataset to load in"
)
parser.add_argument(
"--load-ckpt",
type=str,
default=None,
help="Path to checkpoint to load from"
)
parser.add_argument(
"--log-interval",
type=int,
default=2,
metavar="N",
help="The number of batches to wait before logging training status. When pruning, this is the number of epochs before logging status (default: 100)"
)
parser.add_argument(
"--ckpt-interval",
type=int,
default=-1,
help="The number of epochs to train before saving the next checkpoint"
)
# Device settings
parser.add_argument(
"--seed",
type=int,
default=42,
metavar="S",
help="Random seed (default: 42)"
)
parser.add_argument(
"--seed-fixed-init",
type=int,
default=24,
metavar="S",
help="Random seed when used for fixing weight/score init (default:24)"
)
parser.add_argument(
"--trial-num",
type=int,
default=1,
help="Trial number (1,2, ...)"
)
parser.add_argument(
"--fixed-init",
action="store_true",
default=False,
help="fixed weight initialization"
)
parser.add_argument(
"--mode-connect",
action="store_true",
default=False,
help="Boolean flag to indicate whether to run mode connectivity"
)
parser.add_argument(
'--mode-connect-filename',
type=str,
default=None,
help='filename for state_dict used for mode connectivity'
)
parser.add_argument(
'--how-to-connect',
type=str,
default='prob',
help="procedure for interpolating the mask. Can be \"random\", which chooses a binary value for a mask coordinate with bern(alpha), \"score\" which uses the [0, 1] score for each coordinate for interpolation (the mask consists of continuous values rather than binary in this case), and \"round\" which is uses the mask obtained from the \"score\" option and applies naive rounding."
)
parser.add_argument(
"--no-cuda",
action="store_true",
default=False,
help="Disables CUDA training"
)
parser.add_argument(
"--gpu",
type=int,
default=0,
metavar="G",
help="Override the default choice for a CUDA-enabled GPU by specifying the GPU\"s integer index (i.e. \"0\" for \"cuda:0\")"
)
parser.add_argument(
"--num-workers",
type=int,
default=4,
metavar="W",
help="Number of workers"
)
parser.add_argument(
"--shift",
type=float,
default=0.0,
help="shift portion"
)
parser.add_argument(
"--num-trial",
type=int,
default=1,
help="number of trials for testing sharpness"
)
# WARNING: With DataParallel, this causes some issues
parser.add_argument(
"--pretrained",
dest="pretrained",
default=None,
type=str,
help="use pre-trained model",
)
parser.add_argument(
"--pretrained2",
dest="pretrained2",
default=None,
type=str,
help="use pre-trained model 2",
)
parser.add_argument(
"--save_every",
default=-1,
type=int,
help="Save every ___ epochs"
)
'''
# @ksreenivasan: commenting this for now. I think EP uses it.
parser.add_argument(
"--random-subnet",
action="store_true",
help="Whether or not to use a random subnet when fine tuning for lottery experiments",
)
'''
parser.add_argument(
"-e",
"--evaluate",
dest="evaluate",
action="store_true",
help="evaluate model on validation set",
)
parser.add_argument(
"--compare-rounding",
dest="compare-rounding",
action="store_true",
help="compare different rounding schemes",
)
parser.add_argument(
"--resume",
default=None,
type=str,
metavar="PATH",
help="path to latest checkpoint (default: none)",
)
parser.add_argument(
"--width-mult",
default=1.0,
help="How much to vary the width of the network.",
type=float,
)
parser.add_argument(
"--start-epoch",
default=None,
type=int,
metavar="N",
help="manual epoch number (useful on restarts)",
)
parser.add_argument(
"--warmup_length",
default=0,
type=int,
help="Number of warmup iterations"
)
parser.add_argument(
"-p",
"--print-freq",
default=10,
type=int,
metavar="N",
help="print frequency (default: 10)",
)
parser.add_argument(
'--results-filename',
type=str,
default=None,
help='csv results filename'
)
parser.add_argument(
'--weight-training',
action='store_true',
default=False,
help='flag that decides if we are doing pruning or weight training'
)
parser.add_argument(
'--regularization',
default=None,
type=str,
help='which regularizer to add : |var_red_1|var_red_2|bin_cross_entropy|'
)
"""
var_red_1: lmbda * p^(alpha) (1-p)^(alpha')
var_red_2: w^2 p(1-p)
bin_cross_entropy: -plog(1-p)?
"""
parser.add_argument(
'--lmbda',
type=float,
default=0.001,
help='regularization coefficient lambda'
)
parser.add_argument(
"--alpha",
default=1.0,
type=float,
help="first exponent in regularizer",
)
parser.add_argument(
"--alpha_prime",
default=1.0,
type=float,
help="second exponent in regularizer",
)
# Distributed training
parser.add_argument(
"--world-size",
default=-1,
type=int,
help="number of nodes for distributed training"
)
parser.add_argument(
"--rank",
default=-1,
type=int,
help="node rank for distributed training"
)
parser.add_argument(
"--dist-backend",
default="nccl",
type=str,
help="distributed backend"
)
parser.add_argument(
"--multiprocessing-distributed",
action="store_true",
help="Use multi-processing distributed training to launch "
"N processes per node, which has N GPUs. This is the "
"fastest way to use PyTorch for either single node or "
"multi node data parallel training"
)
parser.add_argument(
"--random-subnet",
action="store_true",
default=False,
help="Just initializes random subnetwork and then trains"
)
parser.add_argument(
"--hc-quantized",
action="store_true",
default=False,
help="round probablities in every iteration"
)
parser.add_argument(
"--quantize-threshold",
default=0.5,
type=float,
help="threhsold to use while quantizing scores in HC",
)
parser.add_argument(
"--checkpoint-at-prune",
action="store_true",
default=False,
help="save checkpoints every time we prune"
)
parser.add_argument(
"--skip-sanity-checks",
action="store_true",
default=False,
help="Enable this to skip sanity checks (save time)"
)
parser.add_argument(
"--skip-fine-tune",
action="store_true",
default=False,
help="Enable this to skip fine tuning (get pure pruned network)"
)
parser.add_argument(
"--shuffle",
action="store_true",
default=False,
help="shuffle weights/masks before sanity check"
)
parser.add_argument(
"--reinit",
action="store_true",
default=False,
help="reinit weights/masks before sanity check"
)
parser.add_argument(
"--chg_mask",
action="store_true",
default=False,
help="chg masks before sanity check"
)
parser.add_argument(
"--chg_weight",
action="store_true",
default=False,
help="chg weights before sanity check"
)
parser.add_argument(
"--fine-tune-optimizer",
type=str,
default='sgd',
help="optimizer option to use |sgd|adam| for fine-tuning weights"
)
parser.add_argument(
"--fine-tune-lr-policy",
type=str,
default=None,
help="Learning rate scheduler (for finetune)"
)
parser.add_argument(
"--fine-tune-lr",
type=float,
default=0.01,
metavar="LR",
help="Learning rate for fine-tuning weights"
)
parser.add_argument(
"--fine-tune-wd",
type=float,
default=0.0001,
metavar="WD",
help="Weight decay for fine-tuning weights"
)
# parser.add_argument(
# "--multigpu",
# default=None,
# type=str,
# help="Which GPUs to use for multigpu training, comma separated"
# )
parser.add_argument(
"--rewind-score",
action="store_true",
default=False,
help="if set True, every time when we prune, we set the score back to the initial state"
)
parser.add_argument(
"--rewind-to-epoch",
default=-1,
type=int,
help="to rewind to some epoch, you have to explicitly set the argument. Otherwise the code will never cache the rewinded score"
)
parser.add_argument(
"--differentiate-clamp",
action="store_true",
default=False,
help="if set True, we project to [0, 1] in forward and therefore differentiate clamp "
)
parser.add_argument(
"--project-freq",
default=1,
type=int,
help="project scores to [0, 1] every k gradient steps"
)
parser.add_argument(
"--run_idx",
default=None,
help="index of run used for counting yml/log/save_folder"
)
parser.add_argument(
"--subfolder",
default=None,
help="subfolder within the location for saving the results"
)
# added parser args for IMP
parser.add_argument(
"--imp_rewind_iter",
default=1000,
type=int,
help="which iterations to rewind to"
)
parser.add_argument(
"--imp-resume-round",
default=-1,
type=int,
help="which round to resume to"
)
parser.add_argument(
"--imp-resume-epoch",
default=-1,
type=int,
help="which epoch to resume to"
)
parser.add_argument(
"--imp-resume-iter",
default=-1,
type=int,
help="which iter to resume to"
)
parser.add_argument(
"--imp-rewind-model",
default="short_imp/Liu_checkpoint_model_correct.pth"
)
parser.add_argument(
"--imp-no-rewind",
action="store_true",
default=False,
help="if set True, we run IMP algorithm without rewinding to previous states"
)
parser.add_argument(
"--imp-rounds",
type=int,
default=-1,
help="if set > 0, then ignore the epochs statement, and calculate epochs based on rounds * iter / round"
)
parser.add_argument(
"--smart_ratio",
type=float,
default=-1,
help="the pruning weights in [0, 1]. E.g. smart_ratio = 0.98 will end up with a 2\% weight remaining model"
)
parser.add_argument(
"--bottom-k-on-forward",
action="store_true",
default=False,
help="Enable this to use bottomK on forward for HC"
)
parser.add_argument(
"--target-sparsity",
default=0.5,
help="decides max percentage of weights that remain at the end of training",
type=float,
)
parser.add_argument(
"--lam_finetune_loss",
type=float,
default=-1,
help="lambda for finetune loss "
)
parser.add_argument(
"--num_step_finetune",
type=int,
default=10,
help="number of steps to check finetune loss "
)
parser.add_argument(
"--unflag-before-finetune",
action="store_true",
default=False,
help="Enable this to unprune weights if possible, before fine-tune"
)
parser.add_argument(
"--override-prune-rate",
action="store_true",
default=False,
help="Enable this to specify prune-rate manually"
)
parser.add_argument(
"--mixed_precision",
type=int,
default=0,
help="Use mixed precision or not"
)
parser.add_argument('--transformer_emsize', type=int, default=200,
help='size of word embeddings')
parser.add_argument('--transformer_nhid', type=int, default=200,
help='number of hidden units per layer')
parser.add_argument('--transformer_nlayers', type=int, default=2,
help='number of layers')
parser.add_argument('--transformer_clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--transformer_bptt', type=int, default=35,
help='sequence length')
parser.add_argument('--transformer_dropout', type=float, default=0.2,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--transformer_nhead', type=int, default=2,
help='the number of heads in the encoder/decoder of the transformer model')
parser.add_argument(
"--only-sanity",
action="store_true",
default=False,
help="Only run sanity checks on the files in specific directory or subdirectories"
)
parser.add_argument(
"--invert-sanity-check",
action="store_true",
default=False,
help="Enable this to run the inverted sanity check (for HC)"
)
parser.add_argument(
"--sanity-folder",
default=None,
type=str,
metavar="PATH",
help="directory(s) to access for only sanity check",
)
parser.add_argument(
"--sr-version",
default=1,
type=int,
help="smart ratio version number (1, 2, ...)",
)
parser.add_argument(
"--use-full-data",
action="store_true",
default=None,
help="Enable this use full train data and not leave anything for validation"
)
parser.add_argument(
"--ckpt-at-fixed-epochs",
default=None,
type=str,
help="pass a list of epochs to load ckpt from later. Mainly for warm-GM"
)
parser.add_argument(
"--drop-bottom-half-weights",
action="store_true",
default=False,
help="Enable this drop bottom half of weights in epoch 1 when using pretrained model"
)
if jupyter_mode:
args = parser.parse_args("")
else:
args = parser.parse_args()
self.get_config(args, jupyter_mode)
return args
def get_config(self, parser_args, jupyter_mode=False):
# get commands from command line
override_args = _parser.argv_to_vars(sys.argv)
# load yaml file
yaml_txt = open(parser_args.config).read()
# override args
loaded_yaml = yaml.load(yaml_txt, Loader=yaml.FullLoader)
if not jupyter_mode:
for v in override_args:
loaded_yaml[v] = getattr(parser_args, v)
print(f"=> Reading YAML config from {parser_args.config}")
parser_args.__dict__.update(loaded_yaml)
def isNotebook(self):
try:
shell = get_ipython().__class__.__name__
if shell == 'ZMQInteractiveShell':
return True # Jupyter notebook or qtconsole
elif shell == 'TerminalInteractiveShell':
return False # Terminal running IPython
else:
return False # Other type (?)
except NameError:
return False # Probably standard Python interpreter
def get_args(self, jupyter_mode=False):
global parser_args
jupyter_mode = self.isNotebook()
parser_args = self.parse_arguments(jupyter_mode)
argshelper = ArgsHelper()
argshelper.get_args()