-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_persist.py
executable file
·528 lines (417 loc) · 14.5 KB
/
run_persist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
#! /usr/bin/env python
'''
Space Telescope Science Institute
Synopsis:
This routine is the steering routine for persistence subtraction,
and evaluation. It is effectively the user interfaace for
evaluating persistence for one or more datastes
The routine requiress a file created by per_list.py that contains
a time-order list of flt files that are to be considered.
Description:
This is a routine to run the other persistence subtraction,
evaluation and logging routines.
It calls other routines, such as subtract_persist to carry
out the actual work. See the documentaion on these routines
to learn more
Basic usage is as follows
run_persist.py dateset
process a single dataset
-all
process all of the datasets in the .ls file
-all [-start time1] [-stop time2] - process the datasets
that are in the .ls file when the observations occured after time1 and/or before time2
time1 and time2 are either MJD or ISO formated times, e.g '2009-11-12 15:13:24'
-many file.ls
process a list of dataset names (one dataset per line). The assumption here
is that you know exactly which datasets you want and so the time limits
should not work. If the file has multiple columns then the assumption is
the dataset name is the first column
[-start time1] [-stop time2] -prog_id xxxxx
Evaluate the persistence for all of the visits of
a program id xxx with optional start and stop times
-obslist obsers2
specifices something other than the normal observation.ls file to use.
as the file containing the list of possible flt files
-dryrun
Indicates in a file what datasets would be processed
-clean
Indicates that instead of processing datasets that the Persist directories should
be removed from the datasets specified instead of processed.
-local
Indicates that instead of putting all of the output files in directories beneath
the visit directories, all the output files will be put in a subdirectory
Persist of the current working direcgtory
-pf
Indicates the name of the parameter file to use for reading the calibration files
needed
-lookback Changes the time for looking back to earlier observations in calculating the persistnce.
-np number
Indicates the a given 'number' of processes will be executed simultanously
Other switches allow you to control the persistence function that is subtracted, e. g.
Note that all of the numbers should be positive numbers!
-model -- 0 for the orginal fermi-function based formalism
1 for the newer purely observational a gammma model
2 for the variable fermi function with differrent prescriptions depending on the
length of the exposre
-n -- The normalization at 1000 s
-e -- The fermi energy, nominally the place where the fermi distribution reaches half
the maximum
-kT -- The width of the fermi function
-alpha -- The power law to model very oversatruated events.
-gamma -- The power law decay with time
-pf foo.pf -- Replace the default parameter file contianing links to all of the files read
by do persist to foo.pf
Outputs:
a history.log file, which is a high level record of the processing
and errors, and
a command.log which is a record of the command sent to the
steering routine for reference
Primary routines:
steer - This routine parses the input command line, and determines what datasets are to be
processed
doit - This routine controls the processing of a single dataset.
Notes:
History:
100603 ksl Coding begun
101014 ksl Began adding capabilities to use this in a production-like
environment
110323 ksl Modified to incorporate our new fitting function for persistence
which requires and extra variable associated with the power law
rise at very high stimulus levels.
110721 ksl Added a crude form of versioning
121220 ksl Updated documentation and cleaned up cals
140923 ksl Changed version number to 3.0 to reflect the fact that this will
be a major change in the software to allow for different types of
models
141225 ksl Minor changes in parameters the program accepts to reflect the
use of a parameter file to contain names of files needed by the
persistence model
'''
import os
import sys
import numpy
import math
import string
import time
import multiprocessing
import date
# Next two lines set the graphics backend to one that is noninteractive
import matplotlib
matplotlib.use('AGG')
import per_list
import subtract_persist
import peaks
import subtract_eval
import subtract_html
# Change this number when ever significant revisions of the S/W are made
import config
VERSION=config.version
def log(string,filename='history.log',option='a'):
'''
Log anything to a file and also print it to
the screen
Notes:
121220 It might be better to assume that the string
had no trailing carriage return and add it
'''
history=open(filename,option)
os.chmod(filename,0770)
history.write(string)
history.close()
# Remove carriage returns from the string
string=string.replace('\n',' ')
print string
return
def do_dataset(dataset='ia21h2e9q',model_type=1,norm=0.3,alpha=0.2,gamma=0.8,e_fermi=80000,kT=20000,fileroot='observations',ds9='yes',local='no',pffile='persist.pf',lookback_time=16):
'''
Run the persistence 'pipeline' for a single dataset.
where dataset is the dataset name
norm,alpha,gamma, e_fermi, kT define the model
fileroot is the rootname of the file produced by per_lsist
ds9 indicates whehter on should try to show resulst in ds9
local=='yes' imples that the output files are created directly below
the place the program is being run, insteand of in the
Visit directories
pffile is the parameter file which contains the names of files needed
to create models of persistence
History
101215 ksl Begain coding to provide a mechanism to control the running of
persistence suhtraction software for larger numbers of datasets
110103 ksl Added local switch for testing
140929 ksl Added new variable model_type to do_dataset, which is simply passed to subtract_persist.do_dataset.
'''
cur_time=date.get_gmt()
print '# Processing dataset %s at %s' % (dataset,cur_time)
log('# Starting dataset %s at %s\n' % (dataset,cur_time))
record=per_list.read_ordered_list_one(fileroot,dataset)
if len(record)>0:
log('run_persist: flt file is %s\n' % record[0])
else:
log('run_persist: dataset %s not found in %s.ls\n' % (dataset,fileroot))
log('NOK: Processing aborted for dataset %s\n' %dataset)
log('# Finished dataset %s at %s\n' % (dataset,cur_time))
return 'Error: Dataset not found at %s' % cur_time
# Carry out peristence subtraction for this dataset
string=subtract_persist.do_dataset(dataset,model_type,norm,alpha,gamma,e_fermi,kT,fileroot,ds9,local,pffile,lookback_time)
log('%s\n' % string)
if string[0:3]=='NOK':
sum_string='%s %s' % (cur_time,string)
log('NOK: Processing aborted for dataset %s\n' %dataset)
cur_time=date.get_gmt()
log('# Finished dataset %s at %s\n' % (dataset,cur_time))
return
# print string
# Carry out peaks identification for this dataset
string=peaks.do_dataset(dataset,fileroot,local=local)
log('%s\n' % string)
if string[0:2]!='OK':
log('NOK: Processing aborted for dataset %s\n' %dataset)
cur_time=date.get_gmt()
log('# Finished dataset %s at %s\n' % (dataset,cur_time))
return
# Evaluate the results at the positions identified in peaks
string=subtract_eval.do_dataset(dataset,local=local)
log('%s\n' % string)
# Make an html file for the dataset
string=subtract_html.do_dataset(dataset,local=local)
log('%s\n' % string)
if string[0:2]!='OK':
log('NOK: Processing aborted for dataset %s\n' %dataset)
cur_time=date.get_gmt()
log('# Finished dataset %s at %s\n' % (dataset,cur_time))
return
words=string.split()
# Now update the summary file
per_list.update_summary(dataset,'Complete_%s'% VERSION,words[2])
cur_time=date.get_gmt()
log('# Finished dataset %s at %s\n' % (dataset,cur_time))
return
def get_no_jobs(jobs):
'''
Check how many jobs are running
'''
njobs=0
for one in jobs:
if one.is_alive():
njobs=njobs+1
return njobs
def steer(argv):
'''
This is a steering routine for subtract persist so that options can be exercised from the
command line. See the top level documentaion for details
100907 ksl Added to begin to automate the subtraction process
101215 ksl Moved to a separate routine so that one would be able to split various portions
of persistence subtraction and evaluation of the results into multiple files
111114 ksl Added a command.log to keep track of all of the run_persist commands
140924 ksl Updated to allow for varioua model types
160103 ksl Begin implemenation of multiprocessing
'''
log('# Start run_persist %s\n' % date.get_gmt())
xstart=time.clock()
cur_time=date.get_gmt()
i=1
dataset_list='none'
model_type=1
norm=0.3
alpha=0.174
gamma=1.0
e_fermi=90000
kT=20000
fileroot='observations'
words=[]
mjd_start=0.0 # A amall number for mjd
mjd_stop=1.e6 # A large number for mjd
dryrun='no'
clean='no'
ds9='no'
local='no'
pffile='persist.pf'
lookback_time=16
switch='single'
np=1
while i<len(argv):
if argv[i]=='-h':
print __doc__
return
elif argv[i]=='-model':
i=i+1
model_type=int(argv[i])
elif argv[i]=='-n':
i=i+1
norm=eval(argv[i])
elif argv[i]=='-e':
i=i+1
e_fermi=eval(argv[i])
elif argv[i]=='-kT':
i=i+1
kT=eval(argv[i])
elif argv[i]=='-alpha':
i=i+1
alpha=eval(argv[i])
elif argv[i]=='-gamma':
i=i+1
gamma=eval(argv[i])
elif argv[i]=='-obslist':
i=i+1
fileroot=eval(argv[i])
elif argv[i]=='-many':
i=i+1
dataset_list=argv[i]
switch='many'
print 'OK you want to evaluate a number of datasets in file %s', dataset_list
elif argv[i]=='-all':
switch='all'
print 'OK you want to evaluate all the records in the obslist'
elif argv[i] =='-prog_id':
i=i+1
prog_id=int(argv[i])
switch='prog_id'
print 'OK, you want to evaluate all the records for program %d' % prog_id
elif argv[i]=='-start':
i=i+1
z=argv[i]
try:
mjd_start=float(z)
except ValueError:
mjd_start=date.iso2mjd(z)
if switch !='prog_id':
switch='all'
elif argv[i]=='-stop':
i=i+1
z=argv[i]
try:
mjd_stop=float(z)
except ValueError:
mjd_stop=date.iso2mjd(z)
if switch !='prog_id':
switch='all'
elif argv[i]=='-dryrun':
dryrun='yes'
print 'OK, This will be a dry run!'
elif argv[i]=='-clean':
dryrun='yes'
clean='yes'
print 'OK. This run will clean out various Persist directories, and revise the .sum file'
elif argv[i]=='-ds9':
ds9='yes'
elif argv[i]=='-local':
local='yes'
elif argv[i]=='-pf':
i=i+1
pffile=argv[i]
elif argv[i]=='-lookback':
i=i+1
lookback_time=eval(argv[i])
elif argv[i]=='-np':
i=i+1
np=int(argv[i])
elif argv[i][0]=='-':
print 'Error: Unknown switch --- %s' % argv[i]
return
else:
words.append(argv[i])
i=i+1
# At this point all of the options have been processed and we can
# begin the processing of individual datasets
# Check that the listfile actually exists, and if not exit with a stern warning
listfile=fileroot+'.ls'
if os.path.exists(listfile)==False:
print 'Error: run_persist.steer - No %s file in run directory. EXITING!!!' % listfile
return
# At this point, we are able to determine exactly what datasets to process
log('# Starting at %s\n' % (cur_time),'command.log')
log('# Starting at %s\n' % (cur_time))
string=''
for one in argv:
string=string+'%s ' % one
log('Command: %s\n' % string,'command.log')
log('Command: %s\n' % string)
datasets=[]
if switch=='single': # Then we are processing a single file
datasets.append(words[0])
elif switch=='all': # Then we are working from the obslist
records=per_list.read_ordered_list_mjd(fileroot,mjd_start,mjd_stop)
for record in records:
datasets.append(record[1])
elif switch=='many': # Then we are reading a file with rootnames of the files we want to process
f=open(dataset_list,'r')
lines=f.readlines()
f.close()
for line in lines:
x=line.strip()
if len(x)>0 and x[0]!='#':
xx=x.split() # Take the first word to be the dataset name
datasets.append(xx[0])
elif switch=='prog_id':
records=per_list.read_ordered_list_progid(fileroot,prog_id,mjd_start,mjd_stop)
for record in records:
datasets.append(record[1])
else:
print 'Error: run_persist: Unknown switch %s'% switch
# Ok, now, unless this is a dryrun we actually process the data
ntot=len(datasets)
print 'There are %d datasets to process' % ntot
dry=[]
if dryrun=='yes':
for one in datasets:
record=per_list.read_ordered_list_one(fileroot,one)
dry.append(record)
per_list.write_ordered_list('dryrun',dry)
if clean=='yes':
# xclean=open('CleanFiles','w')
# os.chmod('CleanFiles',0770)
xclean=per_list.open_file(Cleanfiles)
for one in dry:
xxx=per_list.set_path(one[0])
xclean.write('rm -r -f %s\n' % xxx)
xclean.close()
# return
elif np==1 or len(datasets)==1:
n=1
for one in datasets:
do_dataset(one,model_type,norm,alpha,gamma,e_fermi,kT,fileroot,ds9,local,pffile,lookback_time)
print '# Completed dataset %d of %d. Elapsed time is %0.1f s' % (n,ntot,time.clock()-xstart)
n=n+1
else:
print 'There will be %d processes running simultaneously' % np
jobs=[]
for one in datasets:
p=multiprocessing.Process(target=do_dataset,args=(one,model_type,norm,alpha,gamma,e_fermi,kT,fileroot,ds9,local,pffile,lookback_time,))
jobs.append(p)
i=0
while i<np and i<len(jobs):
print '!Starting %s' % datasets[i]
one=jobs[i]
one.start()
i=i+1
njobs=get_no_jobs(jobs)
while i<len(jobs):
time.sleep(2)
njobs=get_no_jobs(jobs)
print 'Running %d jobs,including job %d (%s) of %d total' % (njobs,i,datasets[i-1],len(datasets))
if njobs<np:
print 'Starting: ',datasets[i]
one=jobs[i]
one.start()
i=i+1
p.join()
print 'Completed multiprocessing'
per_list.fixup_summary_file(datasets)
print 'xxx',xstart,time.clock()
dtime=time.clock()-xstart
cur_time=date.get_gmt()
log('# End %s (Elapsed time for %d datasets was %.1f (or %.1f per dataset)\n' % (date.get_gmt(),ntot,dtime,dtime/ntot))
cur_time=date.get_gmt()
log('# End %s (Elapsed time for %d datasets was %.1f (or %.1f per dataset)\n' % (date.get_gmt(),ntot,dtime,dtime/ntot),'command.log')
log('# Finished at %s\n' % (cur_time))
log('# Finished at %s\n' % (cur_time),'command.log')
return
# Next lines permit one to run the routine from the command line
if __name__ == "__main__":
import sys
if len(sys.argv)>1:
steer(sys.argv)
else:
print 'run_persist.py -h to get brief help text'
print 'OK done'
sys.exit(0)