-
Notifications
You must be signed in to change notification settings - Fork 9
/
audioSegmentation.py.bak
1030 lines (877 loc) · 45.7 KB
/
audioSegmentation.py.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy
import sklearn.cluster
import time
import scipy
import os
import audioFeatureExtraction as aF
import audioTrainTest as aT
import audioBasicIO
import matplotlib.pyplot as plt
from scipy.spatial import distance
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import sklearn.discriminant_analysis
import csv
import os.path
import sklearn
import sklearn.cluster
import hmmlearn.hmm
import cPickle
import glob
""" General utility functions """
def smoothMovingAvg(inputSignal, windowLen=11):
windowLen = int(windowLen)
if inputSignal.ndim != 1:
raise ValueError("")
if inputSignal.size < windowLen:
raise ValueError("Input vector needs to be bigger than window size.")
if windowLen < 3:
return inputSignal
s = numpy.r_[2*inputSignal[0] - inputSignal[windowLen-1::-1], inputSignal, 2*inputSignal[-1]-inputSignal[-1:-windowLen:-1]]
w = numpy.ones(windowLen, 'd')
y = numpy.convolve(w/w.sum(), s, mode='same')
return y[windowLen:-windowLen+1]
def selfSimilarityMatrix(featureVectors):
'''
This function computes the self-similarity matrix for a sequence of feature vectors.
ARGUMENTS:
- featureVectors: a numpy matrix (nDims x nVectors) whose i-th column corresponds to the i-th feature vector
RETURNS:
- S: the self-similarity matrix (nVectors x nVectors)
'''
[nDims, nVectors] = featureVectors.shape
[featureVectors2, MEAN, STD] = aT.normalizeFeatures([featureVectors.T])
featureVectors2 = featureVectors2[0].T
S = 1.0 - distance.squareform(distance.pdist(featureVectors2.T, 'cosine'))
return S
def flags2segs(Flags, window):
'''
ARGUMENTS:
- Flags: a sequence of class flags (per time window)
- window: window duration (in seconds)
RETURNS:
- segs: a sequence of segment's limits: segs[i,0] is start and segs[i,1] are start and end point of segment i
- classes: a sequence of class flags: class[i] is the class ID of the i-th segment
'''
preFlag = 0
curFlag = 0
numOfSegments = 0
curVal = Flags[curFlag]
segsList = []
classes = []
while (curFlag < len(Flags) - 1):
stop = 0
preFlag = curFlag
preVal = curVal
while (stop == 0):
curFlag = curFlag + 1
tempVal = Flags[curFlag]
if ((tempVal != curVal) | (curFlag == len(Flags) - 1)): # stop
numOfSegments = numOfSegments + 1
stop = 1
curSegment = curVal
curVal = Flags[curFlag]
segsList.append((curFlag * window))
classes.append(preVal)
segs = numpy.zeros((len(segsList), 2))
for i in range(len(segsList)):
if i > 0:
segs[i, 0] = segsList[i-1]
segs[i, 1] = segsList[i]
return (segs, classes)
def segs2flags(segStart, segEnd, segLabel, winSize):
'''
This function converts segment endpoints and respective segment labels to fix-sized class labels.
ARGUMENTS:
- segStart: segment start points (in seconds)
- segEnd: segment endpoints (in seconds)
- segLabel: segment labels
- winSize: fix-sized window (in seconds)
RETURNS:
- flags: numpy array of class indices
- classNames: list of classnames (strings)
'''
flags = []
classNames = list(set(segLabel))
curPos = winSize / 2.0
while curPos < segEnd[-1]:
for i in range(len(segStart)):
if curPos > segStart[i] and curPos <= segEnd[i]:
break
flags.append(classNames.index(segLabel[i]))
curPos += winSize
return numpy.array(flags), classNames
def computePreRec(CM, classNames):
'''
This function computes the Precision, Recall and F1 measures, given a confusion matrix
'''
numOfClasses = CM.shape[0]
if len(classNames) != numOfClasses:
print "Error in computePreRec! Confusion matrix and classNames list must be of the same size!"
return
Precision = []
Recall = []
F1 = []
for i, c in enumerate(classNames):
Precision.append(CM[i,i] / numpy.sum(CM[:,i]))
Recall.append(CM[i,i] / numpy.sum(CM[i,:]))
F1.append( 2 * Precision[-1] * Recall[-1] / (Precision[-1] + Recall[-1]))
return Recall, Precision, F1
def readSegmentGT(gtFile):
'''
This function reads a segmentation ground truth file, following a simple CSV format with the following columns:
<segment start>,<segment end>,<class label>
ARGUMENTS:
- gtFile: the path of the CSV segment file
RETURNS:
- segStart: a numpy array of segments' start positions
- segEnd: a numpy array of segments' ending positions
- segLabel: a list of respective class labels (strings)
'''
f = open(gtFile, "rb")
reader = csv.reader(f, delimiter=',')
segStart = []
segEnd = []
segLabel = []
for row in reader:
if len(row) == 3:
segStart.append(float(row[0]))
segEnd.append(float(row[1]))
#if row[2]!="other":
# segLabel.append((row[2]))
#else:
# segLabel.append("silence")
segLabel.append((row[2]))
return numpy.array(segStart), numpy.array(segEnd), segLabel
def plotSegmentationResults(flagsInd, flagsIndGT, classNames, mtStep, ONLY_EVALUATE=False):
'''
This function plots statistics on the classification-segmentation results produced either by the fix-sized supervised method or the HMM method.
It also computes the overall accuracy achieved by the respective method if ground-truth is available.
'''
flags = [classNames[int(f)] for f in flagsInd]
(segs, classes) = flags2segs(flags, mtStep)
minLength = min(flagsInd.shape[0], flagsIndGT.shape[0])
if minLength > 0:
accuracy = numpy.sum(flagsInd[0:minLength] == flagsIndGT[0:minLength]) / float(minLength)
else:
accuracy = -1
if not ONLY_EVALUATE:
Duration = segs[-1, 1]
SPercentages = numpy.zeros((len(classNames), 1))
Percentages = numpy.zeros((len(classNames), 1))
AvDurations = numpy.zeros((len(classNames), 1))
for iSeg in range(segs.shape[0]):
SPercentages[classNames.index(classes[iSeg])] += (segs[iSeg, 1]-segs[iSeg, 0])
for i in range(SPercentages.shape[0]):
Percentages[i] = 100.0 * SPercentages[i] / Duration
S = sum(1 for c in classes if c == classNames[i])
if S > 0:
AvDurations[i] = SPercentages[i] / S
else:
AvDurations[i] = 0.0
for i in range(Percentages.shape[0]):
print classNames[i], Percentages[i], AvDurations[i]
font = {'size': 10}
plt.rc('font', **font)
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.set_yticks(numpy.array(range(len(classNames))))
ax1.axis((0, Duration, -1, len(classNames)))
ax1.set_yticklabels(classNames)
ax1.plot(numpy.array(range(len(flagsInd))) * mtStep + mtStep / 2.0, flagsInd)
if flagsIndGT.shape[0] > 0:
ax1.plot(numpy.array(range(len(flagsIndGT))) * mtStep + mtStep / 2.0, flagsIndGT + 0.05, '--r')
plt.xlabel("time (seconds)")
if accuracy >= 0:
plt.title('Accuracy = {0:.1f}%'.format(100.0 * accuracy))
ax2 = fig.add_subplot(223)
plt.title("Classes percentage durations")
ax2.axis((0, len(classNames) + 1, 0, 100))
ax2.set_xticks(numpy.array(range(len(classNames) + 1)))
ax2.set_xticklabels([" "] + classNames)
ax2.bar(numpy.array(range(len(classNames))) + 0.5, Percentages)
ax3 = fig.add_subplot(224)
plt.title("Segment average duration per class")
ax3.axis((0, len(classNames)+1, 0, AvDurations.max()))
ax3.set_xticks(numpy.array(range(len(classNames) + 1)))
ax3.set_xticklabels([" "] + classNames)
ax3.bar(numpy.array(range(len(classNames))) + 0.5, AvDurations)
fig.tight_layout()
plt.show()
return accuracy
def evaluateSpeakerDiarization(flags, flagsGT):
minLength = min(flags.shape[0], flagsGT.shape[0])
flags = flags[0:minLength]
flagsGT = flagsGT[0:minLength]
uFlags = numpy.unique(flags)
uFlagsGT = numpy.unique(flagsGT)
# compute contigency table:
cMatrix = numpy.zeros((uFlags.shape[0], uFlagsGT.shape[0]))
for i in range(minLength):
cMatrix[int(numpy.nonzero(uFlags == flags[i])[0]), int(numpy.nonzero(uFlagsGT == flagsGT[i])[0])] += 1.0
Nc, Ns = cMatrix.shape
N_s = numpy.sum(cMatrix, axis=0)
N_c = numpy.sum(cMatrix, axis=1)
N = numpy.sum(cMatrix)
purityCluster = numpy.zeros((Nc, ))
puritySpeaker = numpy.zeros((Ns, ))
# compute cluster purity:
for i in range(Nc):
purityCluster[i] = numpy.max((cMatrix[i, :])) / (N_c[i])
for j in range(Ns):
puritySpeaker[j] = numpy.max((cMatrix[:, j])) / (N_s[j])
purityClusterMean = numpy.sum(purityCluster * N_c) / N
puritySpeakerMean = numpy.sum(puritySpeaker * N_s) / N
return purityClusterMean, puritySpeakerMean
def trainHMM_computeStatistics(features, labels):
'''
This function computes the statistics used to train an HMM joint segmentation-classification model
using a sequence of sequential features and respective labels
ARGUMENTS:
- features: a numpy matrix of feature vectors (numOfDimensions x numOfWindows)
- labels: a numpy array of class indices (numOfWindows x 1)
RETURNS:
- startprob: matrix of prior class probabilities (numOfClasses x 1)
- transmat: transition matrix (numOfClasses x numOfClasses)
- means: means matrix (numOfDimensions x 1)
- cov: deviation matrix (numOfDimensions x 1)
'''
uLabels = numpy.unique(labels)
nComps = len(uLabels)
nFeatures = features.shape[0]
if features.shape[1] < labels.shape[0]:
print "trainHMM warning: number of short-term feature vectors must be greater or equal to the labels length!"
labels = labels[0:features.shape[1]]
# compute prior probabilities:
startprob = numpy.zeros((nComps,))
for i, u in enumerate(uLabels):
startprob[i] = numpy.count_nonzero(labels == u)
startprob = startprob / startprob.sum() # normalize prior probabilities
# compute transition matrix:
transmat = numpy.zeros((nComps, nComps))
for i in range(labels.shape[0]-1):
transmat[int(labels[i]), int(labels[i + 1])] += 1
for i in range(nComps): # normalize rows of transition matrix:
transmat[i, :] /= transmat[i, :].sum()
means = numpy.zeros((nComps, nFeatures))
for i in range(nComps):
means[i, :] = numpy.matrix(features[:, numpy.nonzero(labels == uLabels[i])[0]].mean(axis=1))
cov = numpy.zeros((nComps, nFeatures))
for i in range(nComps):
#cov[i,:,:] = numpy.cov(features[:,numpy.nonzero(labels==uLabels[i])[0]]) # use this lines if HMM using full gaussian distributions are to be used!
cov[i, :] = numpy.std(features[:, numpy.nonzero(labels == uLabels[i])[0]], axis=1)
return startprob, transmat, means, cov
def trainHMM_fromFile(wavFile, gtFile, hmmModelName, mtWin, mtStep):
'''
This function trains a HMM model for segmentation-classification using a single annotated audio file
ARGUMENTS:
- wavFile: the path of the audio filename
- gtFile: the path of the ground truth filename
(a csv file of the form <segment start in seconds>,<segment end in seconds>,<segment label> in each row
- hmmModelName: the name of the HMM model to be stored
- mtWin: mid-term window size
- mtStep: mid-term window step
RETURNS:
- hmm: an object to the resulting HMM
- classNames: a list of classNames
After training, hmm, classNames, along with the mtWin and mtStep values are stored in the hmmModelName file
'''
[segStart, segEnd, segLabels] = readSegmentGT(gtFile) # read ground truth data
flags, classNames = segs2flags(segStart, segEnd, segLabels, mtStep) # convert to fix-sized sequence of flags
[Fs, x] = audioBasicIO.readAudioFile(wavFile) # read audio data
#F = aF.stFeatureExtraction(x, Fs, 0.050*Fs, 0.050*Fs);
[F, _] = aF.mtFeatureExtraction(x, Fs, mtWin * Fs, mtStep * Fs, round(Fs * 0.050), round(Fs * 0.050)) # feature extraction
startprob, transmat, means, cov = trainHMM_computeStatistics(F, flags) # compute HMM statistics (priors, transition matrix, etc)
hmm = hmmlearn.hmm.GaussianHMM(startprob.shape[0], "diag") # hmm training
hmm.startprob_ = startprob
hmm.transmat_ = transmat
hmm.means_ = means
hmm.covars_ = cov
fo = open(hmmModelName, "wb") # output to file
cPickle.dump(hmm, fo, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(classNames, fo, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(mtWin, fo, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(mtStep, fo, protocol=cPickle.HIGHEST_PROTOCOL)
fo.close()
return hmm, classNames
def trainHMM_fromDir(dirPath, hmmModelName, mtWin, mtStep):
'''
This function trains a HMM model for segmentation-classification using a where WAV files and .segment (ground-truth files) are stored
ARGUMENTS:
- dirPath: the path of the data diretory
- hmmModelName: the name of the HMM model to be stored
- mtWin: mid-term window size
- mtStep: mid-term window step
RETURNS:
- hmm: an object to the resulting HMM
- classNames: a list of classNames
After training, hmm, classNames, along with the mtWin and mtStep values are stored in the hmmModelName file
'''
flagsAll = numpy.array([])
classesAll = []
for i, f in enumerate(glob.glob(dirPath + os.sep + '*.wav')): # for each WAV file
wavFile = f
gtFile = f.replace('.wav', '.segments') # open for annotated file
if not os.path.isfile(gtFile): # if current WAV file does not have annotation -> skip
continue
[segStart, segEnd, segLabels] = readSegmentGT(gtFile) # read GT data
flags, classNames = segs2flags(segStart, segEnd, segLabels, mtStep) # convert to flags
for c in classNames: # update classnames:
if c not in classesAll:
classesAll.append(c)
[Fs, x] = audioBasicIO.readAudioFile(wavFile) # read audio data
[F, _] = aF.mtFeatureExtraction(x, Fs, mtWin * Fs, mtStep * Fs, round(Fs * 0.050), round(Fs * 0.050)) # feature extraction
lenF = F.shape[1]
lenL = len(flags)
MIN = min(lenF, lenL)
F = F[:, 0:MIN]
flags = flags[0:MIN]
flagsNew = []
for j, fl in enumerate(flags): # append features and labels
flagsNew.append(classesAll.index(classNames[flags[j]]))
flagsAll = numpy.append(flagsAll, numpy.array(flagsNew))
if i == 0:
Fall = F
else:
Fall = numpy.concatenate((Fall, F), axis=1)
startprob, transmat, means, cov = trainHMM_computeStatistics(Fall, flagsAll) # compute HMM statistics
hmm = hmmlearn.hmm.GaussianHMM(startprob.shape[0], "diag") # train HMM
hmm.startprob_ = startprob
hmm.transmat_ = transmat
hmm.means_ = means
hmm.covars_ = cov
fo = open(hmmModelName, "wb") # save HMM model
cPickle.dump(hmm, fo, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(classesAll, fo, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(mtWin, fo, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(mtStep, fo, protocol=cPickle.HIGHEST_PROTOCOL)
fo.close()
return hmm, classesAll
def hmmSegmentation(wavFileName, hmmModelName, PLOT=False, gtFileName=""):
[Fs, x] = audioBasicIO.readAudioFile(wavFileName) # read audio data
try:
fo = open(hmmModelName, "rb")
except IOError:
print "didn't find file"
return
try:
hmm = cPickle.load(fo)
classesAll = cPickle.load(fo)
mtWin = cPickle.load(fo)
mtStep = cPickle.load(fo)
except:
fo.close()
fo.close()
#Features = audioFeatureExtraction.stFeatureExtraction(x, Fs, 0.050*Fs, 0.050*Fs); # feature extraction
[Features, _] = aF.mtFeatureExtraction(x, Fs, mtWin * Fs, mtStep * Fs, round(Fs * 0.050), round(Fs * 0.050))
flagsInd = hmm.predict(Features.T) # apply model
#for i in range(len(flagsInd)):
# if classesAll[flagsInd[i]]=="silence":
# flagsInd[i]=classesAll.index("speech")
# plot results
if os.path.isfile(gtFileName):
[segStart, segEnd, segLabels] = readSegmentGT(gtFileName)
flagsGT, classNamesGT = segs2flags(segStart, segEnd, segLabels, mtStep)
flagsGTNew = []
for j, fl in enumerate(flagsGT): # "align" labels with GT
if classNamesGT[flagsGT[j]] in classesAll:
flagsGTNew.append(classesAll.index(classNamesGT[flagsGT[j]]))
else:
flagsGTNew.append(-1)
CM = numpy.zeros((len(classNamesGT), len(classNamesGT)))
flagsIndGT = numpy.array(flagsGTNew)
for i in range(min(flagsInd.shape[0], flagsIndGT.shape[0])):
CM[int(flagsIndGT[i]),int(flagsInd[i])] += 1
else:
flagsIndGT = numpy.array([])
acc = plotSegmentationResults(flagsInd, flagsIndGT, classesAll, mtStep, not PLOT)
if acc >= 0:
print "Overall Accuracy: {0:.2f}".format(acc)
return (flagsInd, classNamesGT, acc, CM)
else:
return (flagsInd, classesAll, -1, -1)
def mtFileClassification(inputFile, modelName, modelType, plotResults=False, gtFile=""):
'''
This function performs mid-term classification of an audio stream.
Towards this end, supervised knowledge is used, i.e. a pre-trained classifier.
ARGUMENTS:
- inputFile: path of the input WAV file
- modelName: name of the classification model
- modelType: svm or knn depending on the classifier type
- plotResults: True if results are to be plotted using matplotlib along with a set of statistics
RETURNS:
- segs: a sequence of segment's endpoints: segs[i] is the endpoint of the i-th segment (in seconds)
- classes: a sequence of class flags: class[i] is the class ID of the i-th segment
'''
if not os.path.isfile(modelName):
print "mtFileClassificationError: input modelType not found!"
return (-1, -1, -1, -1)
# Load classifier:
if (modelType == 'svm') or (modelType == 'svm_rbf'):
[Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadSVModel(modelName)
elif modelType == 'knn':
[Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadKNNModel(modelName)
elif modelType == 'randomforest':
[Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadRandomForestModel(modelName)
elif modelType == 'gradientboosting':
[Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadGradientBoostingModel(modelName)
elif modelType == 'extratrees':
[Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadExtraTreesModel(modelName)
if computeBEAT:
print "Model " + modelName + " contains long-term music features (beat etc) and cannot be used in segmentation"
return (-1, -1, -1, -1)
[Fs, x] = audioBasicIO.readAudioFile(inputFile) # load input file
if Fs == -1: # could not read file
return (-1, -1, -1, -1)
x = audioBasicIO.stereo2mono(x) # convert stereo (if) to mono
Duration = len(x) / Fs
# mid-term feature extraction:
[MidTermFeatures, _] = aF.mtFeatureExtraction(x, Fs, mtWin * Fs, mtStep * Fs, round(Fs * stWin), round(Fs * stStep))
flags = []
Ps = []
flagsInd = []
for i in range(MidTermFeatures.shape[1]): # for each feature vector (i.e. for each fix-sized segment):
curFV = (MidTermFeatures[:, i] - MEAN) / STD # normalize current feature vector
[Result, P] = aT.classifierWrapper(Classifier, modelType, curFV) # classify vector
flagsInd.append(Result)
flags.append(classNames[int(Result)]) # update class label matrix
Ps.append(numpy.max(P)) # update probability matrix
flagsInd = numpy.array(flagsInd)
# 1-window smoothing
for i in range(1, len(flagsInd) - 1):
if flagsInd[i-1] == flagsInd[i + 1]:
flagsInd[i] = flagsInd[i + 1]
(segs, classes) = flags2segs(flags, mtStep) # convert fix-sized flags to segments and classes
segs[-1] = len(x) / float(Fs)
# Load grount-truth:
if os.path.isfile(gtFile):
[segStartGT, segEndGT, segLabelsGT] = readSegmentGT(gtFile)
flagsGT, classNamesGT = segs2flags(segStartGT, segEndGT, segLabelsGT, mtStep)
flagsIndGT = []
for j, fl in enumerate(flagsGT): # "align" labels with GT
if classNamesGT[flagsGT[j]] in classNames:
flagsIndGT.append(classNames.index(classNamesGT[flagsGT[j]]))
else:
flagsIndGT.append(-1)
flagsIndGT = numpy.array(flagsIndGT)
CM = numpy.zeros((len(classNamesGT), len(classNamesGT)))
for i in range(min(flagsInd.shape[0], flagsIndGT.shape[0])):
CM[int(flagsIndGT[i]),int(flagsInd[i])] += 1
else:
CM = []
flagsIndGT = numpy.array([])
acc = plotSegmentationResults(flagsInd, flagsIndGT, classNames, mtStep, not plotResults)
if acc >= 0:
print "Overall Accuracy: {0:.3f}".format(acc)
return (flagsInd, classNamesGT, acc, CM)
else:
return (flagsInd, classNames, acc, CM)
def evaluateSegmentationClassificationDir(dirName, modelName, methodName):
flagsAll = numpy.array([])
classesAll = []
accuracys = []
for i, f in enumerate(glob.glob(dirName + os.sep + '*.wav')): # for each WAV file
wavFile = f
print wavFile
gtFile = f.replace('.wav', '.segments') # open for annotated file
if methodName.lower() in ["svm", "svm_rbf", "knn","randomforest","gradientboosting","extratrees"]:
flagsInd, classNames, acc, CMt = mtFileClassification(wavFile, modelName, methodName, False, gtFile)
else:
flagsInd, classNames, acc, CMt = hmmSegmentation(wavFile, modelName, False, gtFile)
if acc > -1:
if i==0:
CM = numpy.copy(CMt)
else:
CM = CM + CMt
accuracys.append(acc)
print CMt, classNames
print CM
[Rec, Pre, F1] = computePreRec(CMt, classNames)
CM = CM / numpy.sum(CM)
[Rec, Pre, F1] = computePreRec(CM, classNames)
print " - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - "
print "Average Accuracy: {0:.1f}".format(100.0*numpy.array(accuracys).mean())
print "Average Recall: {0:.1f}".format(100.0*numpy.array(Rec).mean())
print "Average Precision: {0:.1f}".format(100.0*numpy.array(Pre).mean())
print "Average F1: {0:.1f}".format(100.0*numpy.array(F1).mean())
print "Median Accuracy: {0:.1f}".format(100.0*numpy.median(numpy.array(accuracys)))
print "Min Accuracy: {0:.1f}".format(100.0*numpy.array(accuracys).min())
print "Max Accuracy: {0:.1f}".format(100.0*numpy.array(accuracys).max())
def silenceRemoval(x, Fs, stWin, stStep, smoothWindow=0.5, Weight=0.5, plot=False):
'''
Event Detection (silence removal)
ARGUMENTS:
- x: the input audio signal
- Fs: sampling freq
- stWin, stStep: window size and step in seconds
- smoothWindow: (optinal) smooth window (in seconds)
- Weight: (optinal) weight factor (0 < Weight < 1) the higher, the more strict
- plot: (optinal) True if results are to be plotted
RETURNS:
- segmentLimits: list of segment limits in seconds (e.g [[0.1, 0.9], [1.4, 3.0]] means that
the resulting segments are (0.1 - 0.9) seconds and (1.4, 3.0) seconds
'''
if Weight >= 1:
Weight = 0.99
if Weight <= 0:
Weight = 0.01
# Step 1: feature extraction
x = audioBasicIO.stereo2mono(x) # convert to mono
ShortTermFeatures = aF.stFeatureExtraction(x, Fs, stWin * Fs, stStep * Fs) # extract short-term features
# Step 2: train binary SVM classifier of low vs high energy frames
EnergySt = ShortTermFeatures[1, :] # keep only the energy short-term sequence (2nd feature)
E = numpy.sort(EnergySt) # sort the energy feature values:
L1 = int(len(E) / 10) # number of 10% of the total short-term windows
T1 = numpy.mean(E[0:L1]) + 0.000000000000001 # compute "lower" 10% energy threshold
T2 = numpy.mean(E[-L1:-1]) + 0.000000000000001 # compute "higher" 10% energy threshold
Class1 = ShortTermFeatures[:, numpy.where(EnergySt <= T1)[0]] # get all features that correspond to low energy
Class2 = ShortTermFeatures[:, numpy.where(EnergySt >= T2)[0]] # get all features that correspond to high energy
featuresSS = [Class1.T, Class2.T] # form the binary classification task and ...
[featuresNormSS, MEANSS, STDSS] = aT.normalizeFeatures(featuresSS) # normalize and ...
SVM = aT.trainSVM(featuresNormSS, 1.0) # train the respective SVM probabilistic model (ONSET vs SILENCE)
# Step 3: compute onset probability based on the trained SVM
ProbOnset = []
for i in range(ShortTermFeatures.shape[1]): # for each frame
curFV = (ShortTermFeatures[:, i] - MEANSS) / STDSS # normalize feature vector
ProbOnset.append(SVM.predict_proba(curFV.reshape(1,-1))[0][1]) # get SVM probability (that it belongs to the ONSET class)
ProbOnset = numpy.array(ProbOnset)
ProbOnset = smoothMovingAvg(ProbOnset, smoothWindow / stStep) # smooth probability
# Step 4A: detect onset frame indices:
ProbOnsetSorted = numpy.sort(ProbOnset) # find probability Threshold as a weighted average of top 10% and lower 10% of the values
Nt = ProbOnsetSorted.shape[0] / 10
T = (numpy.mean((1 - Weight) * ProbOnsetSorted[0:Nt]) + Weight * numpy.mean(ProbOnsetSorted[-Nt::]))
MaxIdx = numpy.where(ProbOnset > T)[0] # get the indices of the frames that satisfy the thresholding
i = 0
timeClusters = []
segmentLimits = []
# Step 4B: group frame indices to onset segments
while i < len(MaxIdx): # for each of the detected onset indices
curCluster = [MaxIdx[i]]
if i == len(MaxIdx)-1:
break
while MaxIdx[i+1] - curCluster[-1] <= 2:
curCluster.append(MaxIdx[i+1])
i += 1
if i == len(MaxIdx)-1:
break
i += 1
timeClusters.append(curCluster)
segmentLimits.append([curCluster[0] * stStep, curCluster[-1] * stStep])
# Step 5: Post process: remove very small segments:
minDuration = 0.2
segmentLimits2 = []
for s in segmentLimits:
if s[1] - s[0] > minDuration:
segmentLimits2.append(s)
segmentLimits = segmentLimits2
if plot:
timeX = numpy.arange(0, x.shape[0] / float(Fs), 1.0 / Fs)
plt.subplot(2, 1, 1)
plt.plot(timeX, x)
for s in segmentLimits:
plt.axvline(x=s[0])
plt.axvline(x=s[1])
plt.subplot(2, 1, 2)
plt.plot(numpy.arange(0, ProbOnset.shape[0] * stStep, stStep), ProbOnset)
plt.title('Signal')
for s in segmentLimits:
plt.axvline(x=s[0])
plt.axvline(x=s[1])
plt.title('SVM Probability')
plt.show()
return segmentLimits
def speakerDiarization(fileName, numOfSpeakers, mtSize=2.0, mtStep=0.2, stWin=0.05, LDAdim=35, PLOT=False):
'''
ARGUMENTS:
- fileName: the name of the WAV file to be analyzed
- numOfSpeakers the number of speakers (clusters) in the recording (<=0 for unknown)
- mtSize (opt) mid-term window size
- mtStep (opt) mid-term window step
- stWin (opt) short-term window size
- LDAdim (opt) LDA dimension (0 for no LDA)
- PLOT (opt) 0 for not plotting the results 1 for plottingy
'''
[Fs, x] = audioBasicIO.readAudioFile(fileName)
x = audioBasicIO.stereo2mono(x)
Duration = len(x) / Fs
[Classifier1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1] = aT.loadKNNModel(os.path.join("data","knnSpeakerAll"))
[Classifier2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2] = aT.loadKNNModel(os.path.join("data","knnSpeakerFemaleMale"))
[MidTermFeatures, ShortTermFeatures] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, mtStep * Fs, round(Fs * stWin), round(Fs*stWin * 0.5))
MidTermFeatures2 = numpy.zeros((MidTermFeatures.shape[0] + len(classNames1) + len(classNames2), MidTermFeatures.shape[1]))
for i in range(MidTermFeatures.shape[1]):
curF1 = (MidTermFeatures[:, i] - MEAN1) / STD1
curF2 = (MidTermFeatures[:, i] - MEAN2) / STD2
[Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1)
[Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2)
MidTermFeatures2[0:MidTermFeatures.shape[0], i] = MidTermFeatures[:, i]
MidTermFeatures2[MidTermFeatures.shape[0]:MidTermFeatures.shape[0]+len(classNames1), i] = P1 + 0.0001
MidTermFeatures2[MidTermFeatures.shape[0] + len(classNames1)::, i] = P2 + 0.0001
MidTermFeatures = MidTermFeatures2 # TODO
# SELECT FEATURES:
#iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20]; # SET 0A
#iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 99,100]; # SET 0B
#iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,
# 97,98, 99,100]; # SET 0C
iFeaturesSelect = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] # SET 1A
#iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 1B
#iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 1C
#iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53]; # SET 2A
#iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 2B
#iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 2C
#iFeaturesSelect = range(100); # SET 3
#MidTermFeatures += numpy.random.rand(MidTermFeatures.shape[0], MidTermFeatures.shape[1]) * 0.000000010
MidTermFeatures = MidTermFeatures[iFeaturesSelect, :]
(MidTermFeaturesNorm, MEAN, STD) = aT.normalizeFeatures([MidTermFeatures.T])
MidTermFeaturesNorm = MidTermFeaturesNorm[0].T
numOfWindows = MidTermFeatures.shape[1]
# remove outliers:
DistancesAll = numpy.sum(distance.squareform(distance.pdist(MidTermFeaturesNorm.T)), axis=0)
MDistancesAll = numpy.mean(DistancesAll)
iNonOutLiers = numpy.nonzero(DistancesAll < 1.2 * MDistancesAll)[0]
# TODO: Combine energy threshold for outlier removal:
#EnergyMin = numpy.min(MidTermFeatures[1,:])
#EnergyMean = numpy.mean(MidTermFeatures[1,:])
#Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0
#iNonOutLiers = numpy.nonzero(MidTermFeatures[1,:] > Thres)[0]
#print iNonOutLiers
perOutLier = (100.0 * (numOfWindows - iNonOutLiers.shape[0])) / numOfWindows
MidTermFeaturesNormOr = MidTermFeaturesNorm
MidTermFeaturesNorm = MidTermFeaturesNorm[:, iNonOutLiers]
# LDA dimensionality reduction:
if LDAdim > 0:
#[mtFeaturesToReduce, _] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, stWin * Fs, round(Fs*stWin), round(Fs*stWin));
# extract mid-term features with minimum step:
mtWinRatio = int(round(mtSize / stWin))
mtStepRatio = int(round(stWin / stWin))
mtFeaturesToReduce = []
numOfFeatures = len(ShortTermFeatures)
numOfStatistics = 2
#for i in range(numOfStatistics * numOfFeatures + 1):
for i in range(numOfStatistics * numOfFeatures):
mtFeaturesToReduce.append([])
for i in range(numOfFeatures): # for each of the short-term features:
curPos = 0
N = len(ShortTermFeatures[i])
while (curPos < N):
N1 = curPos
N2 = curPos + mtWinRatio
if N2 > N:
N2 = N
curStFeatures = ShortTermFeatures[i][N1:N2]
mtFeaturesToReduce[i].append(numpy.mean(curStFeatures))
mtFeaturesToReduce[i+numOfFeatures].append(numpy.std(curStFeatures))
curPos += mtStepRatio
mtFeaturesToReduce = numpy.array(mtFeaturesToReduce)
mtFeaturesToReduce2 = numpy.zeros((mtFeaturesToReduce.shape[0] + len(classNames1) + len(classNames2), mtFeaturesToReduce.shape[1]))
for i in range(mtFeaturesToReduce.shape[1]):
curF1 = (mtFeaturesToReduce[:, i] - MEAN1) / STD1
curF2 = (mtFeaturesToReduce[:, i] - MEAN2) / STD2
[Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1)
[Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2)
mtFeaturesToReduce2[0:mtFeaturesToReduce.shape[0], i] = mtFeaturesToReduce[:, i]
mtFeaturesToReduce2[mtFeaturesToReduce.shape[0]:mtFeaturesToReduce.shape[0] + len(classNames1), i] = P1 + 0.0001
mtFeaturesToReduce2[mtFeaturesToReduce.shape[0]+len(classNames1)::, i] = P2 + 0.0001
mtFeaturesToReduce = mtFeaturesToReduce2
mtFeaturesToReduce = mtFeaturesToReduce[iFeaturesSelect, :]
#mtFeaturesToReduce += numpy.random.rand(mtFeaturesToReduce.shape[0], mtFeaturesToReduce.shape[1]) * 0.0000010
(mtFeaturesToReduce, MEAN, STD) = aT.normalizeFeatures([mtFeaturesToReduce.T])
mtFeaturesToReduce = mtFeaturesToReduce[0].T
#DistancesAll = numpy.sum(distance.squareform(distance.pdist(mtFeaturesToReduce.T)), axis=0)
#MDistancesAll = numpy.mean(DistancesAll)
#iNonOutLiers2 = numpy.nonzero(DistancesAll < 3.0*MDistancesAll)[0]
#mtFeaturesToReduce = mtFeaturesToReduce[:, iNonOutLiers2]
Labels = numpy.zeros((mtFeaturesToReduce.shape[1], ));
LDAstep = 1.0
LDAstepRatio = LDAstep / stWin
#print LDAstep, LDAstepRatio
for i in range(Labels.shape[0]):
Labels[i] = int(i*stWin/LDAstepRatio);
clf = sklearn.discriminant_analysis.LinearDiscriminantAnalysis(n_components=LDAdim)
clf.fit(mtFeaturesToReduce.T, Labels)
MidTermFeaturesNorm = (clf.transform(MidTermFeaturesNorm.T)).T
if numOfSpeakers <= 0:
sRange = range(2, 10)
else:
sRange = [numOfSpeakers]
clsAll = []
silAll = []
centersAll = []
for iSpeakers in sRange:
k_means = sklearn.cluster.KMeans(n_clusters = iSpeakers)
k_means.fit(MidTermFeaturesNorm.T)
cls = k_means.labels_
means = k_means.cluster_centers_
# Y = distance.squareform(distance.pdist(MidTermFeaturesNorm.T))
clsAll.append(cls)
centersAll.append(means)
silA = []; silB = []
for c in range(iSpeakers): # for each speaker (i.e. for each extracted cluster)
clusterPerCent = numpy.nonzero(cls==c)[0].shape[0] / float(len(cls))
if clusterPerCent < 0.020:
silA.append(0.0)
silB.append(0.0)
else:
MidTermFeaturesNormTemp = MidTermFeaturesNorm[:,cls==c] # get subset of feature vectors
Yt = distance.pdist(MidTermFeaturesNormTemp.T) # compute average distance between samples that belong to the cluster (a values)
silA.append(numpy.mean(Yt)*clusterPerCent)
silBs = []
for c2 in range(iSpeakers): # compute distances from samples of other clusters
if c2!=c:
clusterPerCent2 = numpy.nonzero(cls==c2)[0].shape[0] / float(len(cls))
MidTermFeaturesNormTemp2 = MidTermFeaturesNorm[:,cls==c2]
Yt = distance.cdist(MidTermFeaturesNormTemp.T, MidTermFeaturesNormTemp2.T)
silBs.append(numpy.mean(Yt)*(clusterPerCent+clusterPerCent2)/2.0)
silBs = numpy.array(silBs)
silB.append(min(silBs)) # ... and keep the minimum value (i.e. the distance from the "nearest" cluster)
silA = numpy.array(silA);
silB = numpy.array(silB);
sil = []
for c in range(iSpeakers): # for each cluster (speaker)
sil.append( ( silB[c] - silA[c]) / (max(silB[c], silA[c])+0.00001) ) # compute silhouette
silAll.append(numpy.mean(sil)) # keep the AVERAGE SILLOUETTE
#silAll = silAll * (1.0/(numpy.power(numpy.array(sRange),0.5)))
imax = numpy.argmax(silAll) # position of the maximum sillouette value
nSpeakersFinal = sRange[imax] # optimal number of clusters
# generate the final set of cluster labels
# (important: need to retrieve the outlier windows: this is achieved by giving them the value of their nearest non-outlier window)
cls = numpy.zeros((numOfWindows,))
for i in range(numOfWindows):
j = numpy.argmin(numpy.abs(i-iNonOutLiers))
cls[i] = clsAll[imax][j]
# Post-process method 1: hmm smoothing
for i in range(1):
startprob, transmat, means, cov = trainHMM_computeStatistics(MidTermFeaturesNormOr, cls)
hmm = hmmlearn.hmm.GaussianHMM(startprob.shape[0], "diag") # hmm training
hmm.startprob_ = startprob
hmm.transmat_ = transmat
hmm.means_ = means; hmm.covars_ = cov
cls = hmm.predict(MidTermFeaturesNormOr.T)
# Post-process method 2: median filtering:
cls = scipy.signal.medfilt(cls, 13)
cls = scipy.signal.medfilt(cls, 11)
sil = silAll[imax] # final sillouette
classNames = ["speaker{0:d}".format(c) for c in range(nSpeakersFinal)];
# load ground-truth if available
gtFile = fileName.replace('.wav', '.segments'); # open for annotated file
if os.path.isfile(gtFile): # if groundturh exists
[segStart, segEnd, segLabels] = readSegmentGT(gtFile) # read GT data
flagsGT, classNamesGT = segs2flags(segStart, segEnd, segLabels, mtStep) # convert to flags
if PLOT:
fig = plt.figure()
if numOfSpeakers>0:
ax1 = fig.add_subplot(111)
else:
ax1 = fig.add_subplot(211)
ax1.set_yticks(numpy.array(range(len(classNames))))
ax1.axis((0, Duration, -1, len(classNames)))
ax1.set_yticklabels(classNames)
ax1.plot(numpy.array(range(len(cls)))*mtStep+mtStep/2.0, cls)
if os.path.isfile(gtFile):
if PLOT:
ax1.plot(numpy.array(range(len(flagsGT)))*mtStep+mtStep/2.0, flagsGT, 'r')
purityClusterMean, puritySpeakerMean = evaluateSpeakerDiarization(cls, flagsGT)
print "{0:.1f}\t{1:.1f}".format(100*purityClusterMean, 100*puritySpeakerMean)
if PLOT:
plt.title("Cluster purity: {0:.1f}% - Speaker purity: {1:.1f}%".format(100*purityClusterMean, 100*puritySpeakerMean) )
if PLOT:
plt.xlabel("time (seconds)")
#print sRange, silAll
if numOfSpeakers<=0:
plt.subplot(212)
plt.plot(sRange, silAll)
plt.xlabel("number of clusters");
plt.ylabel("average clustering's sillouette");
plt.show()
return cls
def speakerDiarizationEvaluateScript(folderName, LDAs):
'''
This function prints the cluster purity and speaker purity for each WAV file stored in a provided directory (.SEGMENT files are needed as ground-truth)
ARGUMENTS:
- folderName: the full path of the folder where the WAV and SEGMENT (ground-truth) files are stored
- LDAs: a list of LDA dimensions (0 for no LDA)
'''
types = ('*.wav', )
wavFilesList = []
for files in types:
wavFilesList.extend(glob.glob(os.path.join(folderName, files)))
wavFilesList = sorted(wavFilesList)
# get number of unique speakers per file (from ground-truth)
N = []
for wavFile in wavFilesList:
gtFile = wavFile.replace('.wav', '.segments');
if os.path.isfile(gtFile):
[segStart, segEnd, segLabels] = readSegmentGT(gtFile) # read GT data
N.append(len(list(set(segLabels))))
else:
N.append(-1)
for l in LDAs:
print "LDA = {0:d}".format(l)
for i, wavFile in enumerate(wavFilesList):
speakerDiarization(wavFile, N[i], 2.0, 0.2, 0.05, l, PLOT = False)
print
def musicThumbnailing(x, Fs, shortTermSize=1.0, shortTermStep=0.5, thumbnailSize=10.0, Limit1 = 0, Limit2 = 1):
'''
This function detects instances of the most representative part of a music recording, also called "music thumbnails".
A technique similar to the one proposed in [1], however a wider set of audio features is used instead of chroma features.
In particular the following steps are followed:
- Extract short-term audio features. Typical short-term window size: 1 second
- Compute the self-silimarity matrix, i.e. all pairwise similarities between feature vectors
- Apply a diagonal mask is as a moving average filter on the values of the self-similarty matrix.
The size of the mask is equal to the desirable thumbnail length.
- Find the position of the maximum value of the new (filtered) self-similarity matrix.
The audio segments that correspond to the diagonial around that position are the selected thumbnails
ARGUMENTS:
- x: input signal
- Fs: sampling frequency
- shortTermSize: window size (in seconds)
- shortTermStep: window step (in seconds)
- thumbnailSize: desider thumbnail size (in seconds)
RETURNS:
- A1: beginning of 1st thumbnail (in seconds)
- A2: ending of 1st thumbnail (in seconds)
- B1: beginning of 2nd thumbnail (in seconds)
- B2: ending of 2nd thumbnail (in seconds)
USAGE EXAMPLE:
import audioFeatureExtraction as aF
[Fs, x] = basicIO.readAudioFile(inputFile)
[A1, A2, B1, B2] = musicThumbnailing(x, Fs)
[1] Bartsch, M. A., & Wakefield, G. H. (2005). Audio thumbnailing of popular music using chroma-based representations.
Multimedia, IEEE Transactions on, 7(1), 96-104.
'''
x = audioBasicIO.stereo2mono(x);
# feature extraction:
stFeatures = aF.stFeatureExtraction(x, Fs, Fs*shortTermSize, Fs*shortTermStep)
# self-similarity matrix
S = selfSimilarityMatrix(stFeatures)
# moving filter:
M = int(round(thumbnailSize / shortTermStep))
B = numpy.eye(M,M)
S = scipy.signal.convolve2d(S, B, 'valid')
# post-processing (remove main diagonal elements)
MIN = numpy.min(S)
for i in range(S.shape[0]):
for j in range(S.shape[1]):