forked from google/vk_callback_swapchain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcallback_swapchain.cpp
392 lines (355 loc) · 15 KB
/
callback_swapchain.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/*
* Copyright (C) 2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "callback_swapchain.h"
#include <cassert>
#include <chrono>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>
namespace {
// Determines what heap memory should be allocated from, given
// a set of bits.
int32_t FindMemoryType(
const VkPhysicalDeviceMemoryProperties* memory_properties,
uint32_t memoryTypeBits, VkMemoryPropertyFlags properties) {
for (int32_t i = 0;
i < static_cast<int32_t>(memory_properties->memoryTypeCount); ++i) {
if ((memoryTypeBits & (1 << i)) &&
((memory_properties->memoryTypes[i].propertyFlags & properties) ==
properties))
return i;
}
return -1;
}
void null_callback(void*, uint8_t*, size_t) {}
} // namespace
namespace swapchain {
CallbackSwapchain::CallbackSwapchain(
VkDevice device, uint32_t queue,
const VkPhysicalDeviceProperties* pProperties,
const VkPhysicalDeviceMemoryProperties* memory_properties,
const DeviceData* functions,
const VkSwapchainCreateInfoKHR* _swapchain_info,
const VkAllocationCallbacks* pAllocator,
uint32_t pending_image_timeout_in_milliseconds,
bool always_get_acquired_image)
: swapchain_info_(*_swapchain_info),
num_images_(_swapchain_info->minImageCount == 0
? 1
: _swapchain_info->minImageCount),
image_data_(num_images_),
should_close_(false),
device_(device),
queue_(queue),
functions_(functions),
pending_image_timeout_in_milliseconds_(
pending_image_timeout_in_milliseconds),
always_get_acquired_image_(always_get_acquired_image) {
callback_ = null_callback;
width_ = _swapchain_info->imageExtent.width;
height_ = _swapchain_info->imageExtent.height;
VkPhysicalDeviceMemoryProperties properties = *memory_properties;
build_swapchain_image_data_ = [this, properties, pAllocator]() {
SwapchainImageData image_data;
static const VkFenceCreateInfo fence_info{
VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, 0};
const VkImageCreateInfo image_create_info{
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
nullptr, // pNext
0, // flags
VK_IMAGE_TYPE_2D, // imageType
swapchain_info_.imageFormat, // format
VkExtent3D{swapchain_info_.imageExtent.width,
swapchain_info_.imageExtent.height, 1}, // extent
1, // mipLevels
swapchain_info_.imageArrayLayers, // arrayLayers
VK_SAMPLE_COUNT_1_BIT, // samples
VK_IMAGE_TILING_OPTIMAL, // tiling
swapchain_info_.imageUsage | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, // usage
swapchain_info_.imageSharingMode, // sharingmode
swapchain_info_.queueFamilyIndexCount, // queueFamilyIndexCount
swapchain_info_.pQueueFamilyIndices, // queueFamilyIndices
VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout
};
// The size of the buffer that we need is surprisingly easy.
// Pixel-width * width * height. The GPU will copy into the
// buffer with the stride we provide.
// All we want to do here is create a buffer that we can copy
// the image into.
// TODO(awoloszyn): Currently we know the format is VK_FORMAT_R8G8B8A8_UNORM
// Handle more formats later if we have other swapchain formats we care
// about.
// maximum non-coherent-atom-size is 128 bytes
// This means we can write subsequent layers on 128-byte
// boundaries
size_t buffer_memory_size =
((ImageByteSize() + 127) & ~127) * swapchain_info_.imageArrayLayers;
const VkBufferCreateInfo buffer_create_info{
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // sType
nullptr, // pNext
0, // flags
buffer_memory_size, // size
VK_BUFFER_USAGE_TRANSFER_DST_BIT, // usage
VK_SHARING_MODE_EXCLUSIVE, // sharingMode
0,
nullptr};
VkCommandPoolCreateInfo command_pool_info{
VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, // sType
nullptr, // pNext
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, // flags
queue_ // queueFamilyIndex
};
functions_->vkCreateCommandPool(device_, &command_pool_info, pAllocator,
&command_pool_);
VkCommandBufferAllocateInfo command_buffer_info{
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, // sType
nullptr, // pNext
command_pool_, // commandPool
VK_COMMAND_BUFFER_LEVEL_PRIMARY, // level
1 // count
};
// Create the command buffer
functions_->vkAllocateCommandBuffers(device_, &command_buffer_info,
&image_data.command_buffer_);
// Create the fence
{
functions_->vkCreateFence(device_, &fence_info, pAllocator,
&image_data.fence_);
functions_->vkResetFences(device_, 1, &image_data.fence_);
}
// Create the buffer
{
functions_->vkCreateBuffer(device_, &buffer_create_info, pAllocator,
&image_data.buffer_);
// Create device-memory for the buffer
{
VkMemoryRequirements reqs;
functions_->vkGetBufferMemoryRequirements(device_, image_data.buffer_,
&reqs);
uint32_t memory_type =
FindMemoryType(&properties, reqs.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
VkMemoryAllocateInfo buffer_memory_info{
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // sType
nullptr, // pNext
reqs.size, // allocationSize
memory_type // memoryTypeIndex
};
functions_->vkAllocateMemory(device_, &buffer_memory_info, pAllocator,
&image_data.buffer_memory_);
functions_->vkBindBufferMemory(device_, image_data.buffer_,
image_data.buffer_memory_, 0);
}
}
// Create the image
{
functions_->vkCreateImage(device_, &image_create_info, pAllocator,
&image_data.image_);
// Create device-memory for the image
{
VkMemoryRequirements reqs;
functions_->vkGetImageMemoryRequirements(device_, image_data.image_,
&reqs);
uint32_t memory_type =
FindMemoryType(&properties, reqs.memoryTypeBits, 0);
VkMemoryAllocateInfo image_memory_info{
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // sType
nullptr, // pNext
reqs.size, // allocationSize
memory_type // memoryTypeIndex
};
functions_->vkAllocateMemory(device_, &image_memory_info, pAllocator,
&image_data.image_memory_);
functions_->vkBindImageMemory(device_, image_data.image_,
image_data.image_memory_, 0);
}
}
VkBufferMemoryBarrier dest_barrier{
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, // sType
nullptr, // pNext
VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask
VK_ACCESS_HOST_READ_BIT, // dstAccessMask,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
image_data.buffer_,
0,
VK_WHOLE_SIZE};
VkBufferImageCopy region{
0, // Start of the buffer
0, // bufferRowLength Tightly packed buffer
0, // bufferImageHeight same
VkImageSubresourceLayers{
VK_IMAGE_ASPECT_COLOR_BIT, // aspectMask
0, // mipLevel
0, // baseArrayLayer
swapchain_info_.imageArrayLayers}, // imageSubresourceLayers
VkOffset3D{0, 0, 0},
VkExtent3D{swapchain_info_.imageExtent.width,
swapchain_info_.imageExtent.height, 1}};
VkCommandBufferBeginInfo cbegin{
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, // sType
nullptr, // pNext
0, // flags
nullptr // pInheritanceInfo
};
functions_->vkBeginCommandBuffer(image_data.command_buffer_, &cbegin);
functions_->vkCmdCopyImageToBuffer(
image_data.command_buffer_, image_data.image_,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, image_data.buffer_, 1, ®ion);
functions_->vkCmdPipelineBarrier(
image_data.command_buffer_, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_HOST_BIT, 0, 0, nullptr, 1, &dest_barrier, 0, 0);
functions_->vkEndCommandBuffer(image_data.command_buffer_);
return image_data;
};
// Populate the swapchain image data vector
for (uint32_t i = 0; i < num_images_; i++) {
image_data_[i] = build_swapchain_image_data_();
free_images_.push_back(i);
}
#ifdef _WIN32
thread_ = CreateThread(NULL, 0,
[](void* data) -> DWORD {
((CallbackSwapchain*)data)->CopyThreadFunc();
return 0;
},
this, 0, nullptr);
#else
pthread_create(&thread_, nullptr,
+[](void* data) -> void* {
((CallbackSwapchain*)data)->CopyThreadFunc();
return nullptr;
},
this);
#endif
}
void CallbackSwapchain::Destroy(const VkAllocationCallbacks* pAllocator) {
should_close_.store(true);
#ifdef _WIN32
WaitForSingleObject(thread_, INFINITE);
CloseHandle(thread_);
#else
pthread_join(thread_, nullptr);
#endif
for (size_t i = 0; i < num_images_; ++i) {
functions_->vkFreeMemory(device_, image_data_[i].image_memory_, pAllocator);
functions_->vkDestroyImage(device_, image_data_[i].image_, pAllocator);
functions_->vkFreeMemory(device_, image_data_[i].buffer_memory_,
pAllocator);
functions_->vkDestroyBuffer(device_, image_data_[i].buffer_, pAllocator);
functions_->vkDestroyFence(device_, image_data_[i].fence_, pAllocator);
functions_->vkFreeCommandBuffers(device_, command_pool_, 1,
&image_data_[i].command_buffer_);
}
functions_->vkDestroyCommandPool(device_, command_pool_, pAllocator);
}
void CallbackSwapchain::CopyThreadFunc() {
while (true) {
uint32_t pending_image = 0;
// We have to wait until there is a pending image.
{
// Wait 10ms for our next image.
std::unique_lock<threading::mutex> pl(pending_images_lock_);
while (pending_images_.empty()) {
if (threading::cv_status::timeout ==
pending_images_condition_.wait_for(
pl, std::chrono::milliseconds(
pending_image_timeout_in_milliseconds_))) {
if (should_close_.load()) {
// One last check to see if there are any more pending images.
// If not we can return.
if (!pending_images_.empty()) break;
return;
}
}
}
pending_image = pending_images_.front();
pending_images_.pop_front();
}
VkResult ret = functions_->vkWaitForFences(
device_, 1, &image_data_[pending_image].fence_, false, UINT64_MAX);
functions_->vkResetFences(device_, 1, &image_data_[pending_image].fence_);
void* mapped_value;
functions_->vkMapMemory(device_, image_data_[pending_image].buffer_memory_,
0, VK_WHOLE_SIZE, 0, &mapped_value);
VkMappedMemoryRange range{
VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, // sType
nullptr, // pNext
image_data_[pending_image].buffer_memory_, // memory
0, // offset
VK_WHOLE_SIZE, // size
};
functions_->vkInvalidateMappedMemoryRanges(device_, 1, &range);
uint32_t length = ImageByteSize();
{ callback_(callback_user_data_, (uint8_t*)mapped_value, length); }
functions_->vkUnmapMemory(device_,
image_data_[pending_image].buffer_memory_);
{
std::unique_lock<threading::mutex> l(free_images_lock_);
free_images_.push_back(pending_image);
}
free_images_condition_.notify_all();
}
}
bool CallbackSwapchain::GetImage(uint64_t timeout, uint32_t* image) {
// A helper function that tries to get a free image.
auto try_get_image_index = [&](uint32_t* index) {
uint32_t i = 0;
if (always_get_acquired_image_) {
for (auto iter = free_images_.begin(); iter != free_images_.end();
iter++, i++) {
if (*iter == *image) {
*index = *iter;
free_images_.erase(iter);
return true;
}
}
return false;
} else {
if (free_images_.empty()) return false;
*index = free_images_[0];
free_images_.pop_front();
return true;
}
};
auto wakeup = std::chrono::nanoseconds(timeout);
while (true) {
std::unique_lock<threading::mutex> sl(free_images_lock_);
if (try_get_image_index(image)) return true;
if (timeout == UINT64_MAX) {
free_images_condition_.wait(sl);
} else {
if (free_images_condition_.wait_for(sl, wakeup) ==
threading::cv_status::timeout) {
return false;
}
}
}
}
void CallbackSwapchain::SetCallback(void callback(void*, uint8_t*, size_t),
void* user_data) {
callback_ = callback;
callback_user_data_ = user_data;
}
uint32_t CallbackSwapchain::ImageByteSize() const {
// TODO(awoloszyn): Once we support more than RGBA8, have this be
// more dynamic.
return width_ * height_ * 4;
}
} // namespace swapchain