forked from a-downing/scurvy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath.sage
executable file
·61 lines (38 loc) · 1.4 KB
/
math.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/env sage
var('J L v0 vp x T1 T2 A D')
R = RealField(1000)
#J = R(83.263479748143922)/R(60);
#L = R(-68.675129777373016);
#v0 = R(-0.0034879858661581052)/R(60);
# No constant velocity, no constant acceleration
sol = solve([L == R(0.5)*(v0 + vp) * x, vp == v0 + R(0.25)*J*x^2], vp, x)
#print(sol)
P = (vp - sol[0][0]) * (vp - sol[1][0]) * (vp - sol[2][0])
Q = (x - sol[0][1]) * (x - sol[1][1]) * (x - sol[2][1])
Pc = P.right().coefficients(vp, sparse=False)
cs = ["d", "c", "b", "a"]
print("No constant velocity, no constant acceleration case (T1=T3, T2=T4=T5=T6=T7=0)")
print("vp:")
for i in range(3, -1, -1):
print(f"auto {cs[i]} = {Pc[i].simplify()};")
Qc = Q.right().coefficients(x, sparse=False)
print("x:")
for i in range(3, -1, -1):
print(f"auto {cs[i]} = {Qc[i]};")
# No constant velocity, constant acceleration
sol = solve([L == 0.5*(v0 + vp) * x, vp == v0 - A^2/J + A*x, T1 == A/J, T2 == x - 2*T1], vp, x, T1, T2)
#print(sol)
P = (vp - sol[0][0]) * (vp - sol[1][0])
Q = (x - sol[0][1]) * (x - sol[1][1])
Pc = P.right().coefficients(vp, sparse=False)
cs = ["c", "b", "a"]
print()
print("No constant velocity, constant acceleration case (T1=T3, T2 > 0, T4=T5=T6=T7=0)")
print("vp:")
for i in range(2, -1, -1):
print(f"auto {cs[i]} = {Pc[i].simplify()};")
print()
Qc = Q.right().coefficients(x, sparse=False)
print("x:")
for i in range(2, -1, -1):
print(f"auto {cs[i]} = {Qc[i]};")