-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_Crout_correctness.cpp
242 lines (199 loc) · 8.32 KB
/
test_Crout_correctness.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Legacy code : coreneuron/sim/scopmath/crout_thread.cpp
#include <iostream>
#include <cmath>
#include <random>
#include <chrono>
#include <limits>
#include "Eigen/Dense"
#include "Eigen/LU"
using namespace Eigen;
using namespace std;
#ifdef _OPENACC
#pragma acc routine seq
#endif
template <typename T>
EIGEN_DEVICE_FUNC inline void Crout(int n, T* A, int* pivot) {
int i, j, k;
T *p_k, *p_row, *p_col;
T max;
// For each row and column, k = 0, ..., n-1,
for (k = 0, p_k = A; k < n; p_k += n, k++) {
// find the pivot row
pivot[k] = k;
max = std::fabs(*(p_k + k));
for (j = k + 1, p_row = p_k + n; j < n; j++, p_row += n) {
if (max < std::fabs(*(p_row + k))) {
max = std::fabs(*(p_row + k));
pivot[k] = j;
p_col = p_row;
}
}
// and if the pivot row differs from the current row, then
// interchange the two rows.
if (pivot[k] != k)
for (j = 0; j < n; j++) {
max = *(p_k + j);
*(p_k + j) = *(p_col + j);
*(p_col + j) = max;
}
// and if the matrix is singular, return error
// if ( *(p_k + k) == 0.0 ) return -1;
// otherwise find the upper triangular matrix elements for row k.
for (j = k + 1; j < n; j++) {
*(p_k + j) /= *(p_k + k);
}
// update remaining matrix
for (i = k + 1, p_row = p_k + n; i < n; p_row += n, i++)
for (j = k + 1; j < n; j++)
*(p_row + j) -= *(p_row + k) * *(p_k + j);
}
// return 0;
}
#ifdef _OPENACC
#pragma acc routine seq
#endif
template <typename T>
EIGEN_DEVICE_FUNC inline void solveCrout(int n, T* LU, T* B, T* x, int* pivot) {
int i, k;
T* p_k;
T dum;
// Solve the linear equation Lx = B for x, where L is a lower
// triangular matrix.
for (k = 0, p_k = LU; k < n; p_k += n, k++) {
if (pivot[k] != k) {
dum = B[k];
B[k] = B[pivot[k]];
B[pivot[k]] = dum;
}
x[k] = B[k];
for (i = 0; i < k; i++)
x[k] -= x[i] * *(p_k + i);
x[k] /= *(p_k + k);
}
// Solve the linear equation Ux = y, where y is the solution
// obtained above of Lx = B and U is an upper triangular matrix.
// The diagonal part of the upper triangular part of the matrix is
// assumed to be 1.0.
for (k = n - 1, p_k = LU + n * (n - 1); k >= 0; k--, p_k -= n) {
if (pivot[k] != k) {
dum = B[k];
B[k] = B[pivot[k]];
B[pivot[k]] = dum;
}
for (i = k + 1; i < n; i++)
x[k] -= x[i] * *(p_k + i);
// if (*(p_k + k) == 0.0) return -1;
}
// return 0;
}
/// https://stackoverflow.com/questions/15051367/how-to-compare-vectors-approximately-in-eigen
template<typename DerivedA, typename DerivedB>
bool allclose(const Eigen::DenseBase<DerivedA>& a,
const Eigen::DenseBase<DerivedB>& b,
const typename DerivedA::RealScalar& rtol
= Eigen::NumTraits<typename DerivedA::RealScalar>::dummy_precision(),
const typename DerivedA::RealScalar& atol
= Eigen::NumTraits<typename DerivedA::RealScalar>::epsilon())
{
return ((a.derived() - b.derived()).array().abs()
<= (atol + rtol * b.derived().array().abs())).all();
}
template<typename T>
bool test_Crout_correctness(T rtol = 1e-6, T atol = 1e-6)
{
using MatType = Matrix<T, Dynamic, Dynamic, Eigen::RowMajor>;
using VecType = Matrix<T, Dynamic, 1>;
std::random_device rd; // seeding
std::mt19937 mt(rd());
std::uniform_real_distribution<T> nums(-10, 10);
std::chrono::duration<double> eigen_solve_RowMajor(std::chrono::duration<double>::zero());
std::chrono::duration<double> eigen_solve_ColMajor(std::chrono::duration<double>::zero());
std::chrono::duration<double> crout_solve_host(std::chrono::duration<double>::zero());
T max_relative_error_eigen = std::numeric_limits<T>::epsilon();
T max_relative_error_crout = std::numeric_limits<T>::epsilon();
for (int mat_size = 2; mat_size < 10; mat_size++)
{
MatType A_RowMajor(mat_size, mat_size);
Matrix<T, Dynamic, Dynamic, Eigen::ColMajor> A_ColMajor(mat_size, mat_size); // default in Eigen!
VecType b(mat_size);
for (int repetitions = 0; repetitions < 100000; ++repetitions)
{
do
{
// initialization
for(int r = 0; r < mat_size; r++) {
for(int c = 0; c < mat_size; c++) {
A_RowMajor(r,c) = nums(mt);
A_ColMajor(r,c) = A_RowMajor(r,c);
}
b(r) = nums(mt);
}
} while (!A_RowMajor.fullPivLu().isInvertible()); // Checking Invertibility
// Eigen (RowMajor)
VecType eigen_solution_RowMajor(mat_size);
auto t1 = std::chrono::high_resolution_clock::now();
eigen_solution_RowMajor = A_RowMajor.partialPivLu().solve(b);
auto t2 = std::chrono::high_resolution_clock::now();
eigen_solve_RowMajor += (t2 - t1);
T relative_error_eigen = (A_RowMajor*eigen_solution_RowMajor - b).norm() / b.norm(); // norm() is L2 norm
if (relative_error_eigen > max_relative_error_eigen)
max_relative_error_eigen = relative_error_eigen;
// Eigen (ColMajor)
VecType eigen_solution_ColMajor(mat_size);
t1 = std::chrono::high_resolution_clock::now();
eigen_solution_ColMajor = A_ColMajor.partialPivLu().solve(b);
t2 = std::chrono::high_resolution_clock::now();
eigen_solve_ColMajor += (t2 - t1);
if (!allclose(eigen_solution_RowMajor, eigen_solution_ColMajor, rtol, atol)) {
cerr << "Eigen issue with RowMajor vs ColMajor storage order!" << endl << endl;
return false;
}
// Crout LU-Decomposition CPU
MatType LU(mat_size, mat_size);
LU = A_RowMajor;
Matrix<int, Dynamic, 1> pivot(mat_size);
VecType crout_solution_host(mat_size);
t1 = std::chrono::high_resolution_clock::now();
Crout<T>(mat_size, LU.data(), pivot.data());
solveCrout<T>(mat_size, LU.data(), b.data(), crout_solution_host.data(), pivot.data());
t2 = std::chrono::high_resolution_clock::now();
crout_solve_host += (t2 - t1);
T relative_error_crout = (A_RowMajor*crout_solution_host - b).norm() / b.norm(); // norm() is L2 norm
if (relative_error_crout > max_relative_error_crout)
max_relative_error_crout = relative_error_crout;
if (!allclose(eigen_solution_RowMajor, crout_solution_host, rtol, atol)) {
return false;
}
#ifdef GPU
// Crout LU-Decomposition GPU
VecType crout_solution_dev(mat_size);
LU = A_RowMajor;
T *LU_dev = LU.data();
T *b_dev = b.data();
T *x_dev = crout_solution_dev.data();
int *pivot_dev = pivot.data();
#pragma acc kernels copyin(LU_dev[0:mat_size*mat_size], b_dev[0:mat_size], pivot_dev[0:mat_size]) copyout(x_dev[0:mat_size])
{
Crout<T>(mat_size, LU_dev, pivot_dev);
solveCrout<T>(mat_size, LU_dev, b_dev, x_dev, pivot_dev);
}
if (!allclose(eigen_solution_RowMajor, crout_solution_dev, rtol, atol)) {
return false;
}
#endif
}
}
cout << "Eigen RowMajor : " << eigen_solve_RowMajor.count()*1e3 << " ms" << endl;
cout << "Eigen ColMajor : " << eigen_solve_ColMajor.count()*1e3 << " ms" << endl;
cout << "Crout host : " << crout_solve_host.count()*1e3 << " ms" << endl;
cout << "Eigen relative error : " << max_relative_error_eigen << endl;
cout << "Crout relative error : " << max_relative_error_crout << endl;
cout << "Eigen OoM : " << std::floor(std::log10(max_relative_error_eigen)) << endl;
cout << "Crout OoM : " << std::floor(std::log10(max_relative_error_crout)) << endl;
return true;
}
int main(int argc, char** argv)
{
cout << test_Crout_correctness<double>(1e-8, 1e-8) << endl;
return 0;
}