-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSSO.m
230 lines (215 loc) · 8.09 KB
/
SSO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
function [bfit,befit,spbest,spbesth,priebeh] = SSO (spidn,itern,histogram,dims)
%Táto funkcia je Social Spider Optimization (SSO). Sluzi na najdenie prahov
% pomocou optimalizovanie objektívnej funkcie. Vstupy su:
% Preliminares
% spidn, spiders number
% itern, iterations number
% dims, pocet prahov
% histogram, histogram obrazu
%Vystupy su:
% vektor spbest, èo su prahy patriace k hodnote maximálnej entropie obrazu,
% matica spbesth, prahy nájdené poèas iterácií algoritmov
% vektor befit èo sú zapamätané hodnoty maximálnej entropie poèas iterácií algoritmu
% hodnota bfit èo je hodnota maximálnej entropie
% vektor priebeh èo je hodnota nájdenej maximálnej entropie poèas iterácií algoritmu
%Funkcia bola stiahnutá z https://www.mathworks.com/matlabcentral/fileexchange/46942-a-swarm-optimization-algorithm-inspired-in-the-behavior-of-the-social-spider
% a modifikovaná Kristínou Olešovou
%% Urèenie rozsahu
range = [2,256]; %rozsah histogramu, rozsah hladania riešenie
%2 sluzi ako automaticke ošetrenie v prípade nastavovania prahov na 1
[f ] = maximal_entropy(histogram,dims);
lb=repmat(range(1),1,dims); %uprava rangu pre poziadavky algoritmu
ub=repmat(range(2),1,dims);%uprava rangu pre poziadavky algoritmu
%% Iniciálizácia parametrov
%rand('state',0'); % Reset the random generator
% Define the poblation of females and males
fpl = 0.65; % Dolný limit percenta samièiek
fpu = 0.9; % Horný limit percenta samièiek
fp = fpl+(fpu-fpl)*rand; % Aktuálne percento
fn = round(spidn*fp); % Poèet samièiek
mn = spidn-fn; % Poèet samcov
%% PPravdepodobnos atraktivity alebo odporu samièiek voèi populácii
% Nastavené na viac ako 100 hodnôt. Treba vždy zmeni, pokia¾ je iný
% poèet iterácii
%pm = exp(-(0.1:(3-0.1)/(itern-1):3));
pm=flip((logspace(2,5,itern))/10^4.9);
%% Initialization of vectors
fsp = zeros(fn,dims); % Initlize females
msp = zeros(mn,dims); % Initlize males
fefit = zeros(fn,1); % Initlize fitness females
mafit = zeros(mn,1); % Initlize fitness males
spwei = zeros(spidn,1); % Initlize weigth spiders
fewei = zeros(fn,1); % Initlize weigth spiders
mawei = zeros(mn,1); % Initlize weigth spiders
spbesth = zeros(itern,dims);
befit= zeros(1,itern);
%% Population Initialization
% Generate Females
for j=1:dims
for i=1:fn
fsp(i,j)=round(lb(j)+rand(1,1).*(ub(j)-lb(j)),0);
end
end
% Generate Males
for j=1:dims
for i=1:mn
msp(i,j)=round(lb(j)+rand(1,1).*(ub(j)-lb(j)),0);
end
end
%% **** Evaluations *****
% Evaluation of function for females
for i=1:fn
% Výpoèet entropie
if isequal(fsp(i,:),sort(fsp(i,:)))
fefit(i)=f(fsp(i,:));
else
if i==1
fefit(i)=2;
else
fefit(i)=0;
end
end
end
% Evaluation of function for males
for i=1:mn
mafit(i)=f(msp(i,:));
end
%% ***** Assign weigth or sort ***********
% Obtain weight for every spider
spfit = [fefit' mafit']'; % Mix Females and Males
bfitw = max(spfit); % best fitness
wfit = min(spfit); % worst fitness
for i=1:spidn
spwei(i) =0.0001+((spfit(i)-wfit)/(bfitw-wfit));
end
fewei = spwei(1:fn); % Separate the female mass
mawei = spwei(fn+1:spidn);% Separate the male mass
%% Memory of the best
% Check the best position
[~,Ibe] = max(spwei);
% Check if female or male
if Ibe > fn
% Is Male
spbest=msp(Ibe-fn,:); % Asign best position to spbest
bfit = mafit(Ibe-fn); % Get best fitness for memory
else
% Is Female
spbest=fsp(Ibe,:); % Asign best position to spbest
bfit = fefit(Ibe); % Get best fitness for memory
end
%% Start the iterations
for iter=1:itern
%% ***** Movement of spiders *****
% Move Females
[fsp] = FeMove(spidn,fn,fsp,msp,spbest,Ibe,spwei,dims,lb,ub,pm(iter));
fsp=round(fsp,0);
% Move Males
[msp] = MaMove(fn,mn,fsp,msp,fewei,mawei,dims,lb,ub,pm(iter));
msp=round(msp,0);
%% zastavenie algoritmu pokial su vsetky pavuky na svojom mieste
pom=find(round(mean(fsp)./fsp(2,:),2)==1);
pom2=find(round(mean(msp)./msp(1,:),2)==1);
cat1=(0<length(pom) && length(pom)<dims);
cat2=(0<length(pom2) && length(pom2)<dims);
if length(pom)== dims || length(pom2)== dims || mean(isnan(msp(:)))==1
befit(iter) = bfit;
spbesth(iter,:)=spbest;
break
elseif (cat1==1 && cat2==0)
fsp(1,:)=fsp(1,:)-1;
elseif (cat1==0 && cat2==1)
msp(1,:)=msp(1,:)-1;
elseif (cat1==1 && cat2==1)
fsp(1,:)=fsp(1,:)-1;
msp(1,:)=msp(1,:)-1;
end
%% **** Evaluations *****
% Evaluation of function for females
for j=1:fn
if isequal(fsp(j,:),sort(fsp(j,:)))
try fefit(j)=f(fsp(j,:));
catch ME % Hladanie chyb
disp(pom)
disp(iter)
end
else
fsp(j,:)=sort(fsp(j,:));
try fefit(j)=f(fsp(j,:));
catch ME
disp(pom)
disp(iter)
end
end
end
% Evaluation of function for males
for j=1:mn
if isequal(msp(j,:),sort(msp(j,:)))
mafit(j)=f(msp(j,:));
try mafit(j)=f(msp(j,:));
catch ME
disp(pom2)
% disp(iter)
end
else
msp(j,:)=sort(msp(j,:));
try mafit(j)=f(msp(j,:));
catch ME
disp(pom2)
end
mafit(j)=f(msp(j,:));
end
end
%% ***** Assign weigth or sort ***********
spfit = [fefit' mafit']'; % Mix Females and Males
bfitw = max(spfit); % best fitness
wfit = min(spfit); % worst fitness
% Obtain weight for every spider
for j=1:spidn
spwei(j) =0.0001+((spfit(j)-wfit)/(bfitw-wfit));
end
fewei = spwei(1:fn); % Separate the female mass
mawei = spwei(fn+1:spidn);% Separate the male mass
%% Mating Operator
[ofspr] = Mating(fewei,mawei,fsp,msp,dims);
%% Selection of the Mating
if isempty(ofspr)
% % Do nothing
else
[fsp,msp,fefit,mafit] = Survive(fsp,msp,ofspr,fefit,mafit,spfit,f,fn);
% ***** Recalculate the weigth or sort ***********
spfit = [fefit' mafit']'; % Mix Females and Males
bfitw = max(spfit); % best fitness
wfit = min(spfit); % worst fitness
% Obtain weight for every spider
for j=1:spidn
spwei(j) = 0.001+((spfit(j)-wfit)/(bfitw-wfit));
end
fewei = spwei(1:fn); % Separate the female mass
mawei = spwei(fn+1:spidn);% Separate the male mass
end
%% Memory of the best
% Check if best position belongs to male or female
[~,Ibe2] = max(spwei);
if Ibe2 > fn
% Is Male
spbest2=msp(Ibe2-fn,:); % Asign best position to spbest
bfit2 = mafit(Ibe2-fn); % Get best fitness for memory
else
% Is Female
spbest2 = fsp(Ibe2,:); % Asign best position to spbest
bfit2 = fefit(Ibe2); % Get best fitness for memory
end
%% Global Memory
priebeh(iter) = bfit2;
if bfit>=bfit2
bfit = bfit;
spbest = spbest; % Asign best position to spbest
befit(iter) = bfit;
else
bfit = bfit2;
spbest = spbest2; % Asign best position to spbest
befit(iter) = bfit;
end
spbesth(iter,:)=spbest;
end
end