Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tried Kmeans algo, got poor performance on obvious clusters (screenshot attached) #983

Open
Nomia opened this issue Jul 27, 2021 · 1 comment

Comments

@Nomia
Copy link

Nomia commented Jul 27, 2021

Brief Intro

I generated different clusters with python numpy
image

then I trained in my Xcode program(code attached in the More Details section)
vectors are the points I generated from python numpy for 3 clusters
labels are [0,1,2]

finally, I got the result:

60 total vectors, print(label, index)
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 31
1 32
1 33
1 34
1 35
1 36
1 37
1 38
1 39
2 40
0 41
2 42
2 43
0 44
2 45
2 46
2 47
2 48
2 49
2 50
2 51
2 52
0 53
2 54
2 55
2 56
2 57
0 58
2 59

as you can see from the result, label 1 cluster hold most of the vectors, and the rest seems like random guesses

More Details

func testKmeans() {
        let clusterOne = [[18.188526006613863, 11.248261784580054], [10.977922184631586, 15.109012046596924], [5.452898113107155, 3.5321009807982096], [10.18536635911578, 13.862703624731203], [10.328957328435466, 12.537782900374987], [1.4189763353100684, 5.266359205174575], [9.067851641179294, 10.920729828409662], [10.368836624859934, 15.665231690024799], [2.145960771070766, 4.401557392504384], [2.7620911225735183, 14.920065055992431], [14.12720041718686, 3.468361932877836], [4.167420371109743, 15.894531551132244], [16.41574049710068, 17.549326964691048], [19.01838762281819, 6.618632167330248], [6.850688295269066, 0.8848921926920426], [10.391360018193515, 7.0647893204675], [5.564145939535507, 17.082249462545413], [18.697486709978435, 10.845389268062606], [9.944644191259359, 7.930633818473652], [13.554062994802381, 11.393168588934731]]
        let clusterTwo = [[98.22717216195596, 94.43311365626302], [95.96801168452608, 96.39703533410699], [107.25001265191436, 94.51954931160518], [96.71197635114106, 99.36012790381027], [97.05760533627782, 100.43590091710398], [107.29405539101856, 99.48442540590167], [100.24229465041242, 100.69277829864974], [104.02306613277689, 96.79355788788355], [102.07514033663578, 94.1786915163715], [104.16619176003175, 104.84321793930332], [107.95395690451934, 96.70324724184555], [106.07036600893042, 99.49082144608062], [93.45428443493724, 97.14765864686596], [103.84075072097382, 99.77036826997173], [103.80084391099508, 98.40957369095679], [93.79214518785558, 100.64095494475106], [98.04543573640187, 103.14245232979145], [101.40503319569623, 101.54303891277588], [100.97940805244447, 101.53228869326816], [91.46287923292982, 98.79682339657157]]
        let clusterThree = [[206.66786538454946, 199.1017021618947], [199.38694598772693, 196.8381957876811], [208.5302089809453, 202.86351250650603], [204.10039196509916, 206.8368777115382], [205.43443870343214, 196.6941598041279], [208.12689482387472, 203.11836105818477], [203.23593716528936, 199.21465204846663], [204.7865753112437, 203.7801225895648], [195.30354179620295, 207.66199316618227], [199.73939127272905, 209.14920751840256], [206.7571092925273, 198.82212296945562], [200.80520574403877, 203.20624053902793], [192.02336967359818, 200.33378494221515], [201.19365787431974, 191.9066861191232], [196.2502592069524, 208.9488333465134], [208.89698463042888, 200.69718685831506], [202.270617434823, 204.9654317320587], [195.50674902955151, 208.22877709245074], [197.95303741057813, 191.43455765780755], [202.00407100481, 204.1023751597576]]
        
        var vectors = [Vector]()
        for encoding in clusterOne {
            let vector = Vector(encoding)

            vectors.append(vector)
        }
        
        for encoding in clusterTwo {
            let vector = Vector(encoding)

            vectors.append(vector)
        }
        
        for encoding in clusterThree {
            let vector = Vector(encoding)

            vectors.append(vector)
        }

        // cluster all the face encodings
        var labels = [Int]();
        for label in 0...2 {
            labels.append(label)
        }
        let kmm = KMeans<Int>(labels: labels)
        let result = kmm.trainCenters(vectors, convergeDistance: 0.0001)

        print(vectors.count)
        for (i, label) in kmm.fit(vectors).enumerated() {
            print(label, i)
        }
}
@Nomia Nomia changed the title Tried Kmeans algo, get poor performance on obvious clusters (screenshot attached) Tried Kmeans algo, got poor performance on obvious clusters (screenshot attached) Jul 27, 2021
@yuvashrikarunakaran
Copy link

func testKmeans() {
let clusterOne = [
[18.188526006613863, 11.248261784580054], [10.977922184631586, 15.109012046596924], [5.452898113107155, 3.5321009807982096],
[10.18536635911578, 13.862703624731203], [10.328957328435466, 12.537782900374987], [1.4189763353100684, 5.266359205174575],
[9.067851641179294, 10.920729828409662], [10.368836624859934, 15.665231690024799], [2.145960771070766, 4.401557392504384],
[2.7620911225735183, 14.920065055992431], [14.12720041718686, 3.468361932877836], [4.167420371109743, 15.894531551132244],
[16.41574049710068, 17.549326964691048], [19.01838762281819, 6.618632167330248], [6.850688295269066, 0.8848921926920426],
[10.391360018193515, 7.0647893204675], [5.564145939535507, 17.082249462545413], [18.697486709978435, 10.845389268062606],
[9.944644191259359, 7.930633818473652], [13.554062994802381, 11.393168588934731]
]
let clusterTwo = [
[98.22717216195596, 94.43311365626302], [95.96801168452608, 96.39703533410699], [107.25001265191436, 94.51954931160518],
[96.71197635114106, 99.36012790381027], [97.05760533627782, 100.43590091710398], [107.29405539101856, 99.48442540590167],
[100.24229465041242, 100.69277829864974], [104.02306613277689, 96.79355788788355], [102.07514033663578, 94.1786915163715],
[104.16619176003175, 104.84321793930332], [107.95395690451934, 96.70324724184555], [106.07036600893042, 99.49082144608062],
[93.45428443493724, 97.14765864686596], [103.84075072097382, 99.77036826997173], [103.80084391099508, 98.40957369095679],
[93.79214518785558, 100.64095494475106], [98.04543573640187, 103.14245232979145], [101.40503319569623, 101.54303891277588],
[100.97940805244447, 101.53228869326816], [91.46287923292982, 98.79682339657157]
]
let clusterThree = [
[206.66786538454946, 199.1017021618947], [199.38694598772693, 196.8381957876811], [208.5302089809453, 202.86351250650603],
[204.10039196509916, 206.8368777115382], [205.43443870343214, 196.6941598041279], [208.12689482387472, 203.11836105818477],
[203.23593716528936, 199.21465204846663], [204.7865753112437, 203.7801225895648], [195.30354179620295, 207.66199316618227],
[199.73939127272905, 209.14920751840256], [206.7571092925273, 198.82212296945562], [200.80520574403877, 203.20624053902793],
[192.02336967359818, 200.33378494221515], [201.19365787431974, 191.9066861191232], [196.2502592069524, 208.9488333465134],
[208.89698463042888, 200.69718685831506], [202.270617434823, 204.9654317320587], [195.50674902955151, 208.22877709245074],
[197.95303741057813, 191.43455765780755], [202.00407100481, 204.1023751597576]
]

var vectors = [Vector]()

for encoding in clusterOne + clusterTwo + clusterThree {
    let vector = Vector(encoding)
    vectors.append(vector)
}

// Set labels for three clusters
let kmm = KMeans<Int>(labels: [0, 1, 2])

// Train the KMeans model with vectors
let result = kmm.trainCenters(vectors, convergeDistance: 0.0001)

print("Total Vectors: \(vectors.count)")

// Print final cluster labels
for (index, label) in kmm.fit(vectors).enumerated() {
    print("Label: \(label), Index: \(index)")
}

}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants