-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathim2prop.m
151 lines (129 loc) · 5.24 KB
/
im2prop.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
% ------------------------------------------------------------------------
% Copyright (C)
% ETH Zurich - Switzerland
%
% Kevis-Kokitsi Maninis <[email protected]>
% Jordi Pont-Tuset <[email protected]>
% July 2016
% ------------------------------------------------------------------------
% This file is part of the COB package presented in:
% K.K. Maninis, J. Pont-Tuset, P. Arbelaez and L. Van Gool
% Convolutional Oriented Boundaries
% European Conference on Computer Vision (ECCV), 2016
% Please consider citing the paper if you use this code.
% ------------------------------------------------------------------------
% This function computes the COB-MCG proposals given an image.
% INPUT:
% - image : Input image
% - compute_masks : Compute the proposals masks [0] or not [1]. Note that
% it is very time consuming. Otherwise use the labels
% as shown in the demo.
%
% OUTPUT:
% - proposals : Struct containing the following fields
% + superpixels : Label matrix of the superpixel partition
% + labels : Cell containing the superpixel labels that form
% each of the proposals
% + scores : Score of each of the ranked proposals
% + masks : 3D boolean matrix containing the masks of the proposals
% (only if compute_masks==1)
% + bboxes : Bounding boxes of the proposals (up,left,down,right)
% See 'bboxes' folder for functions to work with them
% + bboxes_scores : Score of each of the ranked bounding box
%
% - ucm2 : Ultrametric Contour Map from which the proposals are
% extracted
% - times : Elapsed times on each part
%
% DEMO:
% - See demos/demo_cob_prop.m
% ------------------------------------------------------------------------
function [proposals, ucm2, times] = im2prop(image, compute_masks)
if ~exist('compute_masks','var')
compute_masks = 0;
end
% Level of overlap to erase duplicates
J_th = 0.95;
% Max margin parameter
theta = 0.7;
% Adjust your paths and parameters in this file
cob_params = set_params(image);
% Get the hierarchies at each scale and the global hierarchy
[ucm2, ucms, times] = img2ucms(image, cob_params);
% Load pre-trained pareto point
pareto_n_cands = loadvar(fullfile(cob_root, 'models', 'mcg_pareto_point_train2012.mat'),'n_cands');
pareto_n_cands(:,3) = [];
% Load pre-trained random forest regresssor for the ranking of proposals
rf_regressor = loadvar(fullfile(cob_root, 'models', 'mcg_rand_forest_train2012.mat'),'rf');
% ------------------------------------
T=tic;
% Multi, 0.5, 2
all_ucms = cat(3,ucm2,ucms(:,:,2),ucms(:,:,1));
% Transform ucms to hierarchies (dendogram) and put them all together
n_hiers = size(all_ucms,3);
lps = [];
ms = cell(n_hiers,1);
ths = cell(n_hiers,1);
for ii=1:n_hiers
% Transform the UCM to a hierarchy
curr_hier = ucm2hier(all_ucms(:,:,ii));
ths{ii}.start_ths = curr_hier.start_ths';
ths{ii}.end_ths = curr_hier.end_ths';
ms{ii} = curr_hier.ms_matrix;
lps = cat(3, lps, curr_hier.leaves_part);
end
% Get full cands, represented on a fused hierarchy
[f_lp,f_ms,cands,start_ths,end_ths] = full_cands_from_hiers(lps,ms,ths,pareto_n_cands);
% Hole filling and complementary proposals
if ~isempty(f_ms)
[cands_hf, cands_comp] = hole_filling(double(f_lp), double(f_ms), cands); %#ok<NASGU>
else
cands_hf = cands;
cands_comp = cands; %#ok<NASGU>
end
% Select which proposals to keep (Uncomment just one line)
cands = cands_hf; % Just the proposals with holes filled
% cands = [cands_hf; cands_comp]; % Holes filled and the complementary
% cands = [cands; cands_hf; cands_comp]; % All of them
% Compute base features
b_feats = compute_base_features(f_lp, f_ms, all_ucms);
b_feats.start_ths = start_ths;
b_feats.end_ths = end_ths;
b_feats.im_size = size(f_lp);
% Filter by overlap
red_cands = mex_fast_reduction(cands-1,b_feats.areas,b_feats.intersections,J_th);
% Compute full features on reduced cands
[feats, bboxes] = compute_full_features(red_cands,b_feats);
% Rank proposals
class_scores = regRF_predict(feats,rf_regressor);
[scores, ids] = sort(class_scores,'descend');
red_cands = red_cands(ids,:);
bboxes = bboxes(ids,:);
if isrow(scores)
scores = scores';
end
% Max margin
[new_ids, proposals.scores] = mex_max_margin(red_cands-1,scores,b_feats.intersections,theta);
cand_labels = red_cands(new_ids,:);
bboxes = bboxes(new_ids,:);
% Filter boxes by overlap
[red_bboxes, proposals.bboxes_scores] = mex_box_reduction(bboxes, proposals.scores, 0.95);
% Change the coordinates of bboxes to be coherent with
% other results from other sources (sel_search, etc.)
proposals.bboxes = [red_bboxes(:,2) red_bboxes(:,1) red_bboxes(:,4) red_bboxes(:,3)];
% Get the labels of leave regions that form each proposals
proposals.superpixels = f_lp;
if ~isempty(f_ms)
proposals.labels = cands2labels(cand_labels,f_ms);
else
proposals.labels = {1};
end
% Transform the results to masks
if compute_masks
if ~isempty(f_ms)
proposals.masks = cands2masks(cand_labels, f_lp, f_ms);
else
proposals.masks = true(size(f_lp));
end
end
times.proposals = toc(T);