-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
195 lines (158 loc) · 6.59 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
#import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from PIL import Image
from random import shuffle
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")
image_size = 128
data_folder = "./data/" + str(image_size) + "/"
class NFGDataset(Dataset):
def __init__(self, mode, transform=None, is_small=False):
assert mode == 'training' or mode == 'testing'
import glob
self.s_filenames = glob.glob(
data_folder + "nfg_training/sources/*.jpg")
self.p_filenames = glob.glob(data_folder + "nfg_training/targets/*.jpg")
if mode == 'testing': # training
self.s_filenames = glob.glob(
data_folder + "nfg_testing/sources/*.jpg")
self.p_filenames = glob.glob(
data_folder + "nfg_testing/targets/*.jpg")
if is_small:
self.s_filenames = self.s_filenames[:8]
self.p_filenames = self.p_filenames[:8]
assert len(self.s_filenames) == len(self.p_filenames)
self.transform = transform
def __len__(self):
return len(self.s_filenames)
def __getitem__(self, idx):
s_filename = self.s_filenames[idx]
p_filename = self.p_filenames[idx]
sketch = Image.open(s_filename).convert('RGB')
photo = Image.open(p_filename).convert('RGB')
sample = {'source': sketch, 'target': photo}
if self.transform:
sample = self.transform(sample)
return sample
class EFGDataset(Dataset):
def __init__(self, mode="training", end_to_end=False, transform=None, is_unpaired=False, is_small=False):
assert mode == 'training' or mode == 'testing'
network = "efg"
if end_to_end is True:
network = "end2end"
current_data_folder = data_folder + network + "_" + mode
import glob
s_filenames = glob.glob(current_data_folder + "/sources/*.jpg")
smile_filenames = glob.glob(
current_data_folder + "/targets/smile/*.jpg")
anger_filenames = glob.glob(
current_data_folder + "/targets/anger/*.jpg")
scream_filenames = glob.glob(
current_data_folder + "/targets/scream/*.jpg")
if is_small:
s_filenames = s_filenames[:8]
smile_filenames = smile_filenames[:8]
anger_filenames = anger_filenames[:8]
scream_filenames = scream_filenames[:8]
self.s_filenames = s_filenames + s_filenames + s_filenames
if is_unpaired:
shuffle(self.s_filenames)
self.e_filenames = smile_filenames + anger_filenames + scream_filenames
assert len(self.s_filenames) == len(self.e_filenames)
self.transform = transform
self.classes = ('smile', 'anger', 'scream')
# generate labels
self.labels = []
for i in range(len(self.classes)):
label = i
for _ in smile_filenames:
self.labels.append(label)
def __len__(self):
return len(self.s_filenames)
def __getitem__(self, idx):
s_filename = self.s_filenames[idx]
e_filename = self.e_filenames[idx]
photo = Image.open(s_filename).convert('RGB')
expression = Image.open(e_filename).convert('RGB')
sample = {'source': photo, 'target': expression}
if self.transform:
sample = self.transform(sample)
label = self.labels[idx]
return sample, label
class AugmentImage(object):
def __call__(self, sample):
sketch, photo = sample['source'], sample['target']
# # ramdom rotate between [-15, 15]
# angle = 30 * np.random.random_sample() - 15
# sketch = sketch.rotate(angle)
# photo = photo.rotate(angle)
# random flip
hflip = np.random.random() < 0.5
if hflip:
sketch = sketch.transpose(Image.FLIP_LEFT_RIGHT)
photo = photo.transpose(Image.FLIP_LEFT_RIGHT)
# random resize between [44, 84]
output_size = np.random.randint(
int(0.8 * image_size), int(1.2 * image_size))
resize = transforms.Scale(output_size) # for pytorch lower version!!!
crop = transforms.CenterCrop(image_size)
sketch = crop(resize(sketch))
photo = crop(resize(photo))
return {'source': sketch, 'target': photo}
class ToTensor(object):
def __call__(self, sample):
sketch, photo = sample['source'], sample['target']
toTensor = transforms.ToTensor()
return {'source': toTensor(sketch), 'target': toTensor(photo)}
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, sample):
norm = transforms.Normalize(mean=self.mean, std=self.std)
sketch, photo = sample['source'], sample['target']
assert sketch.size(0) == 3
return {'source': norm(sketch), 'target': norm(photo)}
if __name__ == "__main__":
# test dataloader
transformed_dataset = EFGDataset(mode='testing', end_to_end=True, is_unpaired=False,
transform=transforms.Compose([AugmentImage(), ToTensor(), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]))
dataloader = DataLoader(transformed_dataset,
batch_size=4, shuffle=True, num_workers=4)
"""
# Helper function to show a batch
def show_batch(images, labels=None, classes=None):
#Show image with landmarks for a batch of samples.
sources, targets = images['source'], images['target']
print(sources[0].size())
grid = utils.make_grid(sources)
plt.subplot(211)
plt.imshow((grid.numpy() * 0.5 + 0.5).transpose((1, 2, 0)))
plt.axis('off')
grid = utils.make_grid(targets)
plt.subplot(212)
plt.imshow((grid.numpy() * 0.5 + 0.5).transpose((1, 2, 0)))
plt.axis('off')
title = ''
if labels is not None:
for label in labels:
title += classes[label]
title += ', '
plt.title(title)
if hasattr(transformed_dataset, 'classes'):
classes = transformed_dataset.classes
for epoch in range(2):
for i_batch, sample_batched in enumerate(dataloader, 0):
images, labels = sample_batched
# images = sample_batched # NO labels for NFGDataset
# show 4th batch and stop.
if i_batch == 3:
plt.figure()
show_batch(images, labels, classes)
# show_batch(images)
plt.show()
break
"""