-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimate_k.py
383 lines (320 loc) · 16.7 KB
/
estimate_k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
import random
import torch.nn as nn
import numpy as np
import torch
import torch.nn.parallel
import pickle as pkl
import torch.backends.cudnn as cudnn
from utils import get_net_builder, get_logger, get_port, over_write_args_from_file, AverageMeter, init_params
from data.get_dataset import get_discover_datasets
from tqdm import tqdm
from argparse import ArgumentParser
from tqdm import tqdm
from utils.utils import model_statistics
import ipdb
from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
from sklearn.metrics import adjusted_rand_score as ari_score
from scipy.optimize import linear_sum_assignment
from functools import partial
from scipy.optimize import minimize_scalar
import matplotlib.pyplot as plt
import seaborn as sns
def main(args):
dataset = get_discover_datasets(args.dataset, args)
train_unlabel_dataset, train_label_dataset = dataset['val_unlabel_dataset'], dataset['val_label_dataset']
train_unlabel_dataloader = torch.utils.data.DataLoader(
train_unlabel_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
train_label_dataloader = torch.utils.data.DataLoader(
train_label_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
_net_builder = get_net_builder(args.net, args.net_from_name)
model = _net_builder(num_classes=100, num_unseen_classes=args.num_unlabeled_classes,
num_seen_classes=args.num_labeled_classes, pretrained=args.use_pretrain,
pretrained_path=args.pretrain_path)
for m in model.parameters():
m.requires_grad = False
model_statistics(model)
model = model.to(args.device)
print('Testing on all in the training data...')
binary_search(model, merge_test_loader=[train_unlabel_dataloader, train_label_dataloader], args=args)
def cluster_acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((int(D), int(D)), dtype=np.int64)
for i in range(y_pred.size):
w[int(int(y_pred[i])), int(y_true[i])] += 1
mapping = np.transpose(np.asarray(linear_sum_assignment(w.max() - w)))
acc = sum([w[i, j] for i, j in mapping]) * 1.0 / y_pred.size
return acc
def test_kmeans_for_scipy(K, merge_test_loader, model, args=None, verbose=False):
"""
In this case, the test loader needs to have the labelled and unlabelled subsets of the training data
"""
K = int(K)
all_feats = []
targets = np.array([])
mask_lab = np.array([]) # From all the data, which instances belong to the labelled set
prefix = f"{args.dataset}_{args.lab_imbalance_factor}_{args.imbalance_factor}_{args.num_labeled_classes}_{args.num_unlabeled_classes}"
pkl_path = os.path.join(f"{prefix}_feature.pkl")
if os.path.exists(pkl_path):
with open(pkl_path, "rb") as f:
all_feats = pkl.load(f)
pkl_path = os.path.join(f"{prefix}_mask.pkl")
with open(pkl_path, "rb") as f:
mask_lab = pkl.load(f)
pkl_path = os.path.join(f"{prefix}_target.pkl")
with open(pkl_path, "rb") as f:
targets = pkl.load(f)
else:
# First extract all features
model.eval()
for loader in merge_test_loader:
for id, batch in enumerate(tqdm(loader)):
images, labels, _ = batch
images = images.to(args.device)
labels = labels.to(args.device)
mask_lb = labels < args.num_labeled_classes
with torch.no_grad():
outputs = model(images)
feats = outputs['feat']
feats = torch.nn.functional.normalize(feats, dim=-1)
all_feats.append(feats.cpu().detach().numpy())
targets = np.append(targets, labels.cpu().numpy())
mask_lab = np.append(mask_lab, mask_lb.cpu().bool().numpy())
mask_lab = mask_lab.astype(bool)
all_feats = np.concatenate(all_feats)
with open(os.path.join(f"{prefix}_feature.pkl"), "wb") as f:
pkl.dump(all_feats, f)
with open(os.path.join(f"{prefix}_mask.pkl"), "wb") as f:
pkl.dump(mask_lab, f)
with open(os.path.join(f"{prefix}_target.pkl"), "wb") as f:
pkl.dump(targets, f)
print(f'Fitting K-Means for K = {K}...')
clustering = AgglomerativeClustering(n_clusters=K).fit(all_feats)
preds = clustering.labels_
# -----------------------
# EVALUATE
# -----------------------
mask = mask_lab
sample_labelled_acc, labelled_nmi, labelled_ari = cluster_acc(targets.astype(int)[mask], preds.astype(int)[mask]), \
nmi_score(targets[mask], preds[mask]), \
ari_score(targets[mask], preds[mask])
class_labelled_acc, labelled_nmi, labelled_ari = class_cluster_acc(targets.astype(int)[mask],
preds.astype(int)[mask]), \
nmi_score(targets[mask], preds[mask]), \
ari_score(targets[mask], preds[mask])
unlabelled_acc, unlabelled_nmi, unlabelled_ari = class_cluster_acc(targets.astype(int)[~mask],
preds.astype(int)[~mask]), \
nmi_score(targets[~mask], preds[~mask]), \
ari_score(targets[~mask], preds[~mask])
#acc = sample_labelled_acc
print(f'K = {K}')
print('Unlabelled class wise acc: ')
print(unlabelled_acc)
print('Labelled class wise acc: ')
print(class_labelled_acc)
# acc = sample_labelled_acc
acc = sample_labelled_acc*args.alpha + class_labelled_acc*(1 - args.alpha)
# acc = class_labelled_acc
print('Labelled Instances acc: ')
print(acc)
return acc
def compute_best_mapping(y_true, y_pred):
y_true = y_true.astype(np.int64)
y_pred = y_pred.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
www = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
www[y_pred[i], y_true[i]] += 1
return np.transpose(np.asarray(linear_sum_assignment(w.max() - w))), w.T, www.T
def binary_search(model, merge_test_loader, args):
from time import time
start = time()
min_classes = args.num_labeled_classes
# Iter 0
big_k = args.max_classes
small_k = min_classes
diff = big_k - small_k
middle_k = int(0.5 * diff + small_k)
labelled_acc_big = test_kmeans_for_scipy(big_k, merge_test_loader, model, args)
labelled_acc_small = test_kmeans_for_scipy(small_k, merge_test_loader, model, args)
labelled_acc_middle = test_kmeans_for_scipy(middle_k, merge_test_loader, model, args)
print(f'Iter 0: BigK {big_k}, Acc {labelled_acc_big:.4f} | MiddleK {middle_k}, Acc {labelled_acc_middle:.4f} | SmallK {small_k}, Acc {labelled_acc_small:.4f} ')
all_accs = [labelled_acc_small, labelled_acc_middle, labelled_acc_big]
best_acc_so_far = np.max(all_accs)
best_acc_at_k = np.array([small_k, middle_k, big_k])[np.argmax(all_accs)]
print(f'Best Acc so far {best_acc_so_far:.4f} at K {best_acc_at_k}')
for i in range(1, int(np.log2(diff)) + 1):
if labelled_acc_big > labelled_acc_small:
best_acc = max(labelled_acc_middle, labelled_acc_big)
small_k = middle_k
labelled_acc_small = labelled_acc_middle
diff = big_k - small_k
middle_k = int(0.5 * diff + small_k)
else:
best_acc = max(labelled_acc_middle, labelled_acc_small)
big_k = middle_k
diff = big_k - small_k
middle_k = int(0.5 * diff + small_k)
labelled_acc_big = labelled_acc_middle
labelled_acc_middle = test_kmeans_for_scipy(middle_k, merge_test_loader, model, args)
print(f'Iter {i}: BigK {big_k}, Acc {labelled_acc_big:.4f} | MiddleK {middle_k}, Acc {labelled_acc_middle:.4f} | SmallK {small_k}, Acc {labelled_acc_small:.4f} ')
all_accs = [labelled_acc_small, labelled_acc_middle, labelled_acc_big]
best_acc_so_far = np.max(all_accs)
best_acc_at_k = np.array([small_k, middle_k, big_k])[np.argmax(all_accs)]
print(f'Best Acc so far {best_acc_so_far:.4f} at K {best_acc_at_k}')
print("The time cost is: {}".format(time() - start))
return best_acc_at_k, best_acc_so_far
def class_cluster_acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((int(D), int(D)), dtype=np.int64)
for i in range(y_pred.size):
w[int(int(y_pred[i])), int(y_true[i])] += 1
mapping = np.transpose(np.asarray(linear_sum_assignment(w.max() - w)))
s = sum(w)
acc = sum([w[i, j] / s[j] if s[j]!=0 else 0 for i, j in mapping]) * 1.0 / (y_true.max() - y_true.min())
return acc
def get_config():
parser = ArgumentParser()
parser.add_argument('--save_dir', type=str, default='saved_models/UNO')
parser.add_argument("--checkpoint_dir", default="checkpoints", type=str, help="checkpoint dir")
parser.add_argument("--dataset", default="CIFAR100", type=str, help="dataset")
parser.add_argument("--data_dir", default="datasets", type=str, help="data directory")
parser.add_argument("--log_dir", default="logs", type=str, help="log directory")
parser.add_argument("--batch_size", default=128, type=int, help="batch size")
parser.add_argument("--num_workers", default=4, type=int, help="number of workers")
parser.add_argument("--alpha", default=0.5, type=float, help="weight")
parser.add_argument("--lr", default=0.4, type=float, help="learning rate")
parser.add_argument("--min_lr", default=0.001, type=float, help="min learning rate")
parser.add_argument('--amp', default=False, action="store_true", help='use mixed precision training or not')
parser.add_argument("--momentum_opt", default=0.9, type=float, help="momentum for optimizer")
parser.add_argument("--weight_decay_opt", default=1.5e-4, type=float, help="weight decay")
parser.add_argument("--warmup_epochs", default=5, type=int, help="warmup epochs")
parser.add_argument("--max_epochs", default=50, type=int, help="warmup epochs")
parser.add_argument('--net', type=str, default='vit_small_patch2_32')
parser.add_argument('--net_from_name', action="store_true", default=False)
parser.add_argument('--use_pretrain', default=True, action='store_true')
parser.add_argument('--seed', default=1, type=int,
help='seed for initializing training. ')
parser.add_argument("--proj_dim", default=256, type=int, help="projected dim")
parser.add_argument("--hidden_dim", default=2048, type=int, help="hidden dim in proj/pred head")
parser.add_argument("--overcluster_factor", default=1, type=int, help="overclustering factor")
parser.add_argument("--num_heads", default=5, type=int, help="number of heads for clustering")
parser.add_argument("--num_hidden_layers", default=1, type=int, help="number of hidden layers")
parser.add_argument("--num_iters_sk", default=3, type=int, help="number of iters for Sinkhorn")
parser.add_argument("--epsilon_sk", default=0.5, type=float, help="epsilon for the Sinkhorn")
parser.add_argument("--temperature", default=1, type=float, help="softmax temperature")
parser.add_argument("--project", default="MIv2", type=str, help="wandb project")
parser.add_argument("--entity", default="rikkixu", type=str, help="wandb entity")
parser.add_argument("--offline", default=True, action="store_true", help="disable wandb")
parser.add_argument("--num_labeled_classes", default=50, type=int, help="number of labeled classes")
parser.add_argument("--num_unlabeled_classes", default=50, type=int, help="number of unlab classes")
parser.add_argument("--pretrain_path", type=str, help="pretrained checkpoint path")
parser.add_argument("--num_large_crops", default=2, type=int, help="number of large crops")
parser.add_argument("--ss_pretrained", default=False, action="store_true", help="self-supervised pretrain")
parser.add_argument("--gpu", type=int, default=0, help="the gpu")
parser.add_argument("--ratio", type=float, default=50, help="the percentage of labeled data")
parser.add_argument("--regenerate", default=False, action="store_true", help="whether to generate data again")
parser.add_argument("--resume", default=False, action="store_true", help="whether to use old model")
parser.add_argument("--save-model", default=False, action="store_true", help="whether to save model")
parser.add_argument('-sn', '--save_name', type=str)
parser.add_argument('--min_max_ratio', type=float, default=0.3)
parser.add_argument('--max_kmeans_iter', type=int, default=10)
parser.add_argument('--k_means_init', type=int, default=10)
parser.add_argument("--algorithm",
default='UNO',
type=str,
help="")
parser.add_argument("--lab_imbalance_factor",
type=int,
help="")
parser.add_argument("--imbalance_factor",
type=int,
help="")
parser.add_argument("--num_classes",
default=100,
type=int,
help="number of small crops")
parser.add_argument("--random_head",
default=False,
action="store_true",
help="")
parser.add_argument("--lr_w",
type=float,
help="")
parser.add_argument("--gamma", type=float)
parser.add_argument("--num_outer_iters",
type=int,
help="")
parser.add_argument("--flag",
type=int,
default=0,
help="")
parser.add_argument("--val",
type=bool,
default=False,
help="")
parser.add_argument('--max_classes', default=1000, type=int)
# config file
parser.add_argument('--c', type=str, default='')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
args.device = torch.device("cuda" if args.cuda else "cpu")
over_write_args_from_file(args, args.c)
args.num_classes = args.num_labeled_classes + args.num_unlabeled_classes
args.num_crops = args.num_large_crops
return args
if __name__ == "__main__":
args = get_config()
device = torch.device("cuda" if args.cuda else "cpu")
args.dump_path = os.path.join(
"data/splits", f'{args.dataset}-labeled-{args.num_labeled_classes}'
f'-unlabeled-{args.num_unlabeled_classes}-'
f'imbalance-{args.imbalance_factor}.pkl')
os.environ["WANDB_API_KEY"] = "4da1b870fbd955fdee5d0ebb0f28e94ebdaae96d"
os.environ["WANDB_MODE"] = "offline" if args.offline else "online"
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
# random seed has to be set for the syncronization of labeled data sampling in each process.
assert args.seed is not None
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
args.val = False
save_path = os.path.join(args.save_dir, args.save_name)
print(save_path)
args.save_path = save_path
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
print(args)
main(args)