diff --git a/src/ds5/ds5-auto-calibration.cpp b/src/ds5/ds5-auto-calibration.cpp index 7e30e848fe..d2bedf07ba 100644 --- a/src/ds5/ds5-auto-calibration.cpp +++ b/src/ds5/ds5-auto-calibration.cpp @@ -1114,13 +1114,13 @@ namespace librealsense } } - void auto_calibrated::remove_leading_outliers(uint16_t data[256], int size) + void auto_calibrated::remove_outliers(uint16_t data[256], int size) { //Due to the async between the preset activation and the flow, the initial frames of the sample may include unrelated data. // the purpose of the function is to eliminate those by replacing them with a single value. // This assumes that the fill_rate is contiguous during scan (i.e. grows or shrinks monotonically) + // Additionally, this function rectifies singular sporadic outliers which are in the top 5% that may skew the results uint16_t base_fr = 0; - bool gap_identified = false; for (int i = 255; i >= 0; i--) { // Initialize reference value @@ -1134,18 +1134,28 @@ namespace librealsense // Rectify missing values if (!data[i]) data[i] = base_fr; - else + } + + static const int _outlier_percentile = 9500; // The outlier value is expected to be significantly above this value + for (int i = 0; i <= 253; i++) // Check for single outliers by assessing triples + { + auto val1 = data[i]; + auto val2 = data[i+1]; + auto val3 = data[i+2]; + + // Check for rectification candidate + if ((val2 > val1) && (val2 > val3)) { - if (gap_identified) - { - data[i] = base_fr; - continue; - } - float change_scale = (float)base_fr / data[i]; - if (change_scale > 1.5f || change_scale < 0.67f) // use 50% increment/decrement from previous sample + auto diff = val3-val1; + auto delta = std::max(std::abs(val2-val1),std::abs(val2-val3)); + // Actual outlier is a + // - spike 3 times or more than the expected gap + // - in the 5 top percentile + // - with neighbour values being smaller by at least 500 points to avoid clamping around the peak + if ((delta > 500) && (delta > (std::abs(diff) * 3)) && (val2 > _outlier_percentile)) { - gap_identified = true; - LOG_OCC_DEBUG(std::string(to_string() << "Start rectifying data from index " << i << " due to jump from " << base_fr << " to " << data[i])); + data[i+1] = data[i] + diff/2; + LOG_OCC_DEBUG(std::string(to_string() << "Outlier with value " << val2 << " was changed to be " << data[i+1] )); } } } @@ -1462,8 +1472,8 @@ namespace librealsense } #endif // Do not delete - to be used to improve algo robustness - //remove_leading_outliers(_fill_factor, _total_frames); fill_missing_data(_fill_factor, _total_frames); + remove_outliers(_fill_factor, _total_frames); std::stringstream ss; ss << "{\n \"calib type\":" << 0 << ",\n \"host assistance\":" << 2 << diff --git a/src/ds5/ds5-auto-calibration.h b/src/ds5/ds5-auto-calibration.h index 57433219ed..ea19c5e12c 100644 --- a/src/ds5/ds5-auto-calibration.h +++ b/src/ds5/ds5-auto-calibration.h @@ -79,7 +79,7 @@ namespace librealsense void get_target_dots_info(rs2_frame_queue* frames, float dots_x[4], float dots_y[4], rs2::stream_profile & profile, rs2_intrinsics & fy, int progress, update_progress_callback_ptr progress_callback); uint16_t calc_fill_rate(const rs2_frame* f); void fill_missing_data(uint16_t data[256], int size); - void remove_leading_outliers(uint16_t data[256], int size); + void remove_outliers(uint16_t data[256], int size); void collect_depth_frame_sum(const rs2_frame* f); DirectSearchCalibrationResult get_calibration_status(int timeout_ms, std::function progress_func, bool wait_for_final_results = true);