-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathex13.py
74 lines (57 loc) · 2.42 KB
/
ex13.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
r"""Laplace with mixed boundary conditions.
This example is another extension of `ex01.py`, still solving the Laplace
equation but now with mixed boundary conditions, two parts isopotential (charged
and earthed) and the rest insulated.
The example is :math:`\Delta u = 0` in
:math:`\Omega=\{(x,y):1<x^2+y^2<4,~0<\theta<\pi/2\}`, where :math:`\tan \theta =
y/x`, with :math:`u = 0` on :math:`y = 0` and :math:`u = 1` on :math:`x =
0`. The mesh is first constructed as a rectangle in the :math:`r\theta`-plane,
where the isopotential parts are conveniently tagged using `skfem.Mesh.with_boundaries`;
then the mesh is mapped to the :math:`xy`-plane.
The exact solution is :math:`u = 2 \theta / \pi`. The field strength is :math:`|\nabla u|^2 = 4 / \pi^2 (x^2 + y^2)`
so the conductance (for unit potential difference and conductivity) is
:math:`\|\nabla u\|^2 = 2 \ln 2 / \pi`.
"""
from skfem import *
from skfem.models.poisson import laplace, mass
from skfem.io import from_meshio
import numpy as np
radii = [1., 2.]
lcar = .1
mesh = (MeshTri
.init_tensor(np.linspace(*radii, 1 + int(np.diff(radii) / lcar)),
np.linspace(0, np.pi/2, 1 + int(3*np.pi/4 / lcar)))
.with_boundaries({
'ground': lambda xi: xi[1] == 0.,
'positive': lambda xi: xi[1] == np.pi/2,
}))
mesh = mesh.translated(mesh.p[0] * np.stack([np.cos(mesh.p[1]),
np.sin(mesh.p[1])]) - mesh.p)
elements = ElementTriP2()
basis = Basis(mesh, elements)
A = asm(laplace, basis)
u = basis.zeros()
u[basis.get_dofs("positive")] = 1.
u = solve(*condense(A, x=u, D=basis.get_dofs({"positive", "ground"})))
M = asm(mass, basis)
u_exact = 2 * np.arctan2(*basis.doflocs[::-1]) / np.pi
u_error = u - u_exact
error_L2 = np.sqrt(u_error @ M @ u_error)
conductance = {'skfem': u @ A @ u,
'exact': 2 * np.log(2) / np.pi}
@Functional
def port_flux(w):
from skfem.helpers import dot, grad
return dot(w.n, grad(w['u']))
current = {}
for port, boundary in mesh.boundaries.items():
fbasis = FacetBasis(mesh, elements, facets=boundary)
current[port] = asm(port_flux, fbasis, u=u)
def visualize():
from skfem.visuals.matplotlib import plot, show
return plot(basis, u, shading='gouraud', colorbar=True)
if __name__ == '__main__':
print('L2 error:', error_L2)
print('conductance:', conductance)
print('Current in through ports:', current)
visualize().show()