-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathcifar_dataset.py
46 lines (36 loc) · 1.44 KB
/
cifar_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import random
import cPickle as pickle
import torch
import torch.utils.data as data_utils
import common
class Dataset():
def __init__(self, args):
"""load cifar dataset"""
print("Loading cifar dataset...")
train_data = self.unpickle('./data/cifar/data_batch_{}'.format(random.randint(1,5)))
test_data = self.unpickle('./data/cifar/test_batch')
self.train_loader = self.convert2tensor(train_data, args.batch_size, args.trainset_limit)
self.test_loader = self.convert2tensor(test_data, args.batch_size, args.testset_limit)
def unpickle(self, filename):
fo = open(filename, 'rb')
dict = pickle.load(fo)
fo.close()
return dict
def convert2tensor(self, dataset, batch_size, limit):
data = dataset['data']
data = data[:limit]
print("normalizing images...")
data = common.normalize(data)
print("done")
target = dataset['labels']
target = target[:limit]
target = np.asarray(target)
tensor_data = torch.from_numpy(data)
tensor_data = tensor_data.float()
tensor_target = torch.from_numpy(target)
loader = data_utils.TensorDataset(tensor_data, tensor_target)
loader_dataset = data_utils.DataLoader(loader, batch_size=batch_size, shuffle = True)
return loader_dataset
def return_dataset(self):
return self.train_loader, self.test_loader