-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathbackpropagation.py
175 lines (149 loc) · 6.92 KB
/
backpropagation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from __future__ import print_function
import os
import argparse
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=40, metavar='N',
help='number of epochs to train (default: 40)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--deep', action='store_true', default=False,
help='using deep model (20 fully connected layers)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
try:
os.makedirs('./data')
except:
print('directory ./data already exists')
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self, deep):
super(Net, self).__init__()
self.deep = deep
if deep:
self.fc1 = nn.Linear(28*28, 100); self.fc2 = nn.Linear(100, 100); self.fc3 = nn.Linear(100, 100); self.fc4 = nn.Linear(100, 100);
self.fc5 = nn.Linear(100, 100); self.fc6 = nn.Linear(100, 100); self.fc7 = nn.Linear(100, 100); self.fc8 = nn.Linear(100, 100);
self.fc9 = nn.Linear(100, 100); self.fc10 = nn.Linear(100, 100); self.fc11 = nn.Linear(100, 100); self.fc12 = nn.Linear(100, 100);
self.fc13 = nn.Linear(100, 100); self.fc14 = nn.Linear(100, 100); self.fc15 = nn.Linear(100, 100); self.fc16 = nn.Linear(100, 100);
self.fc17 = nn.Linear(100, 100); self.fc18 = nn.Linear(100, 100); self.fc19 = nn.Linear(100, 100); self.fc20 = nn.Linear(100, 10);
self.fcs = [self.fc1, self.fc2, self.fc3, self.fc4,
self.fc5, self.fc6, self.fc7, self.fc8,
self.fc9, self.fc10, self.fc11, self.fc12,
self.fc13, self.fc14, self.fc15, self.fc16,
self.fc17, self.fc18, self.fc19, self.fc20]
else:
self.fc1 = nn.Linear(28*28, 150)
self.fc2 = nn.Linear(150, 100)
self.fc3 = nn.Linear(100, 50)
self.fc4 = nn.Linear(50, 10)
self.fc5 = nn.Linear(10, 10)
self.optimizer = optim.SGD(self.parameters(), lr=args.lr, momentum=args.momentum)
self.train_acc = []
self.test_acc = []
def forward(self, x):
if self.deep:
x = x.view(-1, 28*28)
for fc in self.fcs[:-1]:
x = F.relu(fc(x))
x = self.fcs[-1](x)
return F.log_softmax(x)
else:
x = x.view(-1, 28*28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = self.fc5(x)
return F.log_softmax(x)
def train_(self, epoch):
self.train()
for batch_idx, (data, target) in enumerate(train_loader):
correct = 0
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
self.optimizer.zero_grad()
output = self(data)
loss = F.nll_loss(output, target)
loss.backward()
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
accuracy = 100. * correct / len(data)
self.optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}, Accuracy: {}/{} ({:.4f}%)'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0],
correct, len(data),
accuracy))
self.train_acc.append(accuracy)
def test_(self, epoch):
self.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = self(data)
test_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
test_loss = test_loss
test_loss /= len(test_loader) # loss function already averages over batch size
accuracy = 100. * correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
accuracy))
self.test_acc.append(accuracy)
def save_result(self):
try:
os.makedirs('./result')
except:
print('directory ./result already exists')
filename = os.path.join('./result/', 'bp_deep.pickle' if self.deep else 'bp.pickle')
f = open(filename,'w')
pickle.dump((self.train_acc, self.test_acc), f)
f.close()
model = Net(args.deep)
if args.cuda:
model.cuda()
for epoch in range(1, args.epochs + 1):
model.train_(epoch)
model.test_(epoch)
model.save_result()