-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDataSet.py
126 lines (103 loc) · 4.05 KB
/
DataSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import sys
import pickle
import cv2
import os, fnmatch
import glob
import sys
import gc
import numpy as np
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
def GetPickleDataSet():
# Load training images
train_images = pickle.load(open("X.p", "rb" ))
# Load image labels
labels = pickle.load(open("Y.p", "rb" ))
# Make into arrays as the neural network wants these
train_images = np.array(train_images)
labels = np.array(labels)
# Normalize labels - training images get normalized to start in the network
labels = labels/4
# Shuffle images along with their labels, then split into training/validation sets
train_images, labels = shuffle(train_images, labels)
# Test size may be 10% or 20%
X_train, X_val, y_train, y_val = train_test_split(train_images, labels, test_size=0.1)
return (X_train, y_train, X_val, y_val)
X_train_files = []
Y_train_files = []
X_dev_files = []
Y_dev_files = []
train_set_count = 0
dev_set_count = 0
def ScanFolders(dev_set_ratio):
global X_train_files
global Y_train_files
global X_dev_files
global Y_dev_files
global train_set_count
global dev_set_count
X_top_folder = 'D:/cs230-project/CULaneOriginalImage'
Y_top_folder = 'D:/cs230-project/CULaneLabels'
for subDir in os.listdir(X_top_folder):
X_path = os.path.join(X_top_folder, subDir)
Y_path = os.path.join(Y_top_folder, subDir)
if not os.path.isdir(X_path):
continue
for subDir2 in os.listdir(X_path):
X_path2 = os.path.join(X_path, subDir2)
Y_path2 = os.path.join(Y_path, subDir2)
if not os.path.isdir(X_path2):
continue
X_files = []
Y_files = []
for file in os.listdir(X_path2):
if fnmatch.fnmatch(file, "*.jpg"):
X_img_file = os.path.join(X_path2, file)
Y_img_file = os.path.join(Y_path2, file)
Y_img_file = os.path.splitext(Y_img_file)[0] + '.png'
if (os.path.isfile(Y_img_file)):
X_files.append(X_img_file)
Y_files.append(Y_img_file)
X, Y = shuffle(np.array(X_files), np.array(Y_files))
X_train, X_dev, Y_train, Y_dev = train_test_split(X, Y, test_size=dev_set_ratio)
X_train_files = X_train_files + X_train.tolist()
Y_train_files = Y_train_files + Y_train.tolist()
X_dev_files = X_dev_files + X_dev.tolist()
Y_dev_files = Y_dev_files + Y_dev.tolist()
train_set_count = len(X_train_files)
dev_set_count = len(X_dev_files)
print('Train Set:', str(train_set_count), 'Dev Set:', str(dev_set_count))
def TrainDataGenerator(batch_size, mode, image_resizing_factor):
if mode == 'dev' or mode == 'test':
X_files = X_dev_files
Y_files = Y_dev_files
else:
X_files = X_train_files
Y_files = Y_train_files
#print('Available images in', mode, 'dataset:', str(len(X_files)))
ii = 0
X_train = []
Y_train = []
batch_count = 0
while True:
imgArrY = cv2.imread(Y_files[ii], cv2.IMREAD_GRAYSCALE)
imgArrY = cv2.resize(imgArrY, (0,0), fx=image_resizing_factor, fy=image_resizing_factor)
imgArrY = np.clip(imgArrY, 0, 1)
imgArrY = imgArrY.reshape(imgArrY.shape[0],imgArrY.shape[1], 1)
imgArrX = cv2.imread(X_files[ii], cv2.IMREAD_COLOR)
imgArrX = cv2.resize(imgArrX, (0,0), fx=image_resizing_factor, fy=image_resizing_factor)
if mode != 'test':
imgArrX = imgArrX / 255
X_train.append(imgArrX)
Y_train.append(imgArrY)
if len(X_train) == batch_size:
yield((np.array(X_train), np.array(Y_train)))
del X_train
del Y_train
gc.collect()
X_train = []
Y_train = []
ii = ii + 1
if ii == len(X_files):
ii = 0
ScanFolders(0.1)