forked from thtang/CheXNet-with-localization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
93 lines (78 loc) · 2.99 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import imageio
from os import listdir
import skimage.transform
import pickle
import sys, os
from sklearn.preprocessing import MultiLabelBinarizer
image_folder_path = sys.argv[1] # folder contain all images
data_entry_path = sys.argv[2]
bbox_list_path = sys.argv[3]
train_txt_path = sys.argv[4]
valid_txt_path = sys.argv[5]
data_path = sys.argv[6] # ouput folder for preprocessed data
def get_labels(pic_id):
labels = meta_data.loc[meta_data["Image Index"]==pic_id,"Finding Labels"]
return labels.tolist()[0].split("|")
# load data
meta_data = pd.read_csv(data_entry_path)
bbox_list = pd.read_csv(bbox_list_path)
with open(train_txt_path, "r") as f:
train_list = [ i.strip() for i in f.readlines()]
with open(valid_txt_path, "r") as f:
valid_list = [ i.strip() for i in f.readlines()]
label_eight = list(np.unique(bbox_list["Finding Label"])) + ["No Finding"]
# transform training images
print("training example:",len(train_list))
print("take care of your RAM here !!!")
train_X = []
for i in range(len(train_list)):
image_path = os.path.join(image_folder_path,train_list[i])
img = imageio.imread(image_path)
if img.shape != (1024,1024): # there some image with shape (1024,1024,4) in training set
img = img[:,:,0]
img_resized = skimage.transform.resize(img,(256,256)) # or use img[::4] here
train_X.append((np.array(img_resized)/255).reshape(256,256,1))
if i % 3000==0:
print(i)
train_X = np.array(train_X)
np.save(os.path.join(data_path,"train_X_small.npy"), train_X)
# transform validation images
print("validation example:",len(valid_list))
valid_X = []
for i in range(len(valid_list)):
image_path = os.path.join(image_folder_path,valid_list[i])
img = imageio.imread(image_path)
if img.shape != (1024,1024):
img = img[:,:,0]
img_resized = skimage.transform.resize(img,(256,256))
# if img.shape != (1024,1024):
# train_X.append(img[:,:,0])
# else:
valid_X.append((np.array(img_resized)/255).reshape(256,256,1))
if i % 3000==0:
print(i)
valid_X = np.array(valid_X)
np.save(os.path.join(data_path,"valid_X_small.npy"), valid_X)
# process label
print("label preprocessing")
train_y = []
for train_id in train_list:
train_y.append(get_labels(train_id))
valid_y = []
for valid_id in valid_list:
valid_y.append(get_labels(valid_id))
encoder = MultiLabelBinarizer()
encoder.fit(train_y+valid_y)
train_y_onehot = encoder.transform(train_y)
valid_y_onehot = encoder.transform(valid_y)
train_y_onehot = np.delete(train_y_onehot, [2,3,5,6,7,10,12],1) # delete out 8 and "No Finding" column
valid_y_onehot = np.delete(valid_y_onehot, [2,3,5,6,7,10,12],1) # delete out 8 and "No Finding" column
with open(data_path + "/train_y_onehot.pkl","wb") as f:
pickle.dump(train_y_onehot, f)
with open(data_path + "/valid_y_onehot.pkl","wb") as f:
pickle.dump(valid_y_onehot, f)
with open(data_path + "/label_encoder.pkl","wb") as f:
pickle.dump(encoder, f)