forked from thtang/CheXNet-with-localization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdenseNet_localization.py
304 lines (240 loc) · 9.74 KB
/
denseNet_localization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import numpy as np
from os import listdir
import skimage.transform
import torch
from torch.utils.data import Dataset, DataLoader
from torch.nn import functional as F
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
import torch.optim as optim
from torch.autograd import Function
from torchvision import models
from torchvision import utils
import cv2
import sys
import os
import pickle
from collections import defaultdict
from collections import OrderedDict
import skimage
from skimage.io import *
from skimage.transform import *
import scipy
import scipy.ndimage as ndimage
import scipy.ndimage.filters as filters
from scipy.ndimage import binary_dilation
import matplotlib.patches as patches
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
test_txt_path = sys.argv[1]
img_folder_path = sys.argv[2]
with open(test_txt_path, "r") as f:
test_list = [i.strip() for i in f.readlines()]
print("number of test examples:",len(test_list))
test_X = []
print("load and transform image")
for i in range(len(test_list)):
image_path = os.path.join(img_folder_path, test_list[i])
img = scipy.misc.imread(image_path)
if img.shape != (1024,1024):
img = img[:,:,0]
img_resized = skimage.transform.resize(img,(256,256))
test_X.append((np.array(img_resized)).reshape(256,256,1))
if i % 100==0:
print(i)
test_X = np.array(test_X)
# model archi
# construct model
class DenseNet121(nn.Module):
"""Model modified.
The architecture of our model is the same as standard DenseNet121
except the classifier layer which has an additional sigmoid function.
"""
def __init__(self, out_size):
super(DenseNet121, self).__init__()
self.densenet121 = torchvision.models.densenet121(pretrained=True)
num_ftrs = self.densenet121.classifier.in_features
self.densenet121.classifier = nn.Sequential(
nn.Linear(num_ftrs, out_size),
nn.Sigmoid()
)
def forward(self, x):
x = self.densenet121(x)
return x
model = DenseNet121(8).cuda()
model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load("model/DenseNet121_aug4_pretrain_WeightBelow1_1_0.829766922537.pkl"))
print("model loaded")
# build test dataset
class ChestXrayDataSet_plot(Dataset):
def __init__(self, input_X = test_X, transform=None):
self.X = np.uint8(test_X*255)
self.transform = transform
def __getitem__(self, index):
"""
Args:
index: the index of item
Returns:
image
"""
current_X = np.tile(self.X[index],3)
image = self.transform(current_X)
return image
def __len__(self):
return len(self.X)
test_dataset = ChestXrayDataSet_plot(input_X = test_X,transform=transforms.Compose([
transforms.ToPILImage(),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])
]))
thresholds = np.load("thresholds.npy")
print("activate threshold",thresholds)
print("generate heatmap ..........")
# ======= Grad CAM Function =========
class PropagationBase(object):
def __init__(self, model, cuda=False):
self.model = model
self.model.eval()
if cuda:
self.model.cuda()
self.cuda = cuda
self.all_fmaps = OrderedDict()
self.all_grads = OrderedDict()
self._set_hook_func()
self.image = None
def _set_hook_func(self):
raise NotImplementedError
def _encode_one_hot(self, idx):
one_hot = torch.FloatTensor(1, self.preds.size()[-1]).zero_()
one_hot[0][idx] = 1.0
return one_hot.cuda() if self.cuda else one_hot
def forward(self, image):
self.image = image
self.preds = self.model.forward(self.image)
# self.probs = F.softmax(self.preds)[0]
# self.prob, self.idx = self.preds[0].data.sort(0, True)
return self.preds.cpu().data.numpy()
def backward(self, idx):
self.model.zero_grad()
one_hot = self._encode_one_hot(idx)
self.preds.backward(gradient=one_hot, retain_graph=True)
class GradCAM(PropagationBase):
def _set_hook_func(self):
def func_f(module, input, output):
self.all_fmaps[id(module)] = output.data.cpu()
def func_b(module, grad_in, grad_out):
self.all_grads[id(module)] = grad_out[0].cpu()
for module in self.model.named_modules():
module[1].register_forward_hook(func_f)
module[1].register_backward_hook(func_b)
def _find(self, outputs, target_layer):
for key, value in outputs.items():
for module in self.model.named_modules():
if id(module[1]) == key:
if module[0] == target_layer:
return value
raise ValueError('Invalid layer name: {}'.format(target_layer))
def _normalize(self, grads):
l2_norm = torch.sqrt(torch.mean(torch.pow(grads, 2))) + 1e-5
return grads / l2_norm.data[0]
def _compute_grad_weights(self, grads):
grads = self._normalize(grads)
self.map_size = grads.size()[2:]
return nn.AvgPool2d(self.map_size)(grads)
def generate(self, target_layer):
fmaps = self._find(self.all_fmaps, target_layer)
grads = self._find(self.all_grads, target_layer)
weights = self._compute_grad_weights(grads)
gcam = torch.FloatTensor(self.map_size).zero_()
for fmap, weight in zip(fmaps[0], weights[0]):
gcam += fmap * weight.data
gcam = F.relu(Variable(gcam))
gcam = gcam.data.cpu().numpy()
gcam -= gcam.min()
gcam /= gcam.max()
gcam = cv2.resize(gcam, (self.image.size(3), self.image.size(2)))
return gcam
def save(self, filename, gcam, raw_image):
gcam = cv2.applyColorMap(np.uint8(gcam * 255.0), cv2.COLORMAP_JET)
gcam = gcam.astype(np.float) + raw_image.astype(np.float)
gcam = gcam / gcam.max() * 255.0
cv2.imwrite(filename, np.uint8(gcam))
# ======== Create heatmap ===========
heatmap_output = []
image_id = []
output_class = []
gcam = GradCAM(model=model, cuda=True)
for index in range(len(test_dataset)):
input_img = Variable((test_dataset[index]).unsqueeze(0).cuda(), requires_grad=True)
probs = gcam.forward(input_img)
activate_classes = np.where((probs > thresholds)[0]==True)[0] # get the activated class
for activate_class in activate_classes:
gcam.backward(idx=activate_class)
output = gcam.generate(target_layer="module.densenet121.features.denseblock4.denselayer16.conv.2")
#### this output is heatmap ####
if np.sum(np.isnan(output)) > 0:
print("fxxx nan")
heatmap_output.append(output)
image_id.append(index)
output_class.append(activate_class)
print("test ",str(index)," finished")
print("heatmap output done")
print("total number of heatmap: ",len(heatmap_output))
# ======= Plot bounding box =========
img_width, img_height = 224, 224
img_width_exp, img_height_exp = 1024, 1024
crop_del = 16
rescale_factor = 4
class_index = ['Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia', 'Pneumothorax']
avg_size = np.array([[411.8, 512.5, 219.0, 139.1], [348.5, 392.3, 479.8, 381.1],
[396.5, 415.8, 221.6, 318.0], [394.5, 389.1, 294.0, 297.4],
[434.3, 366.7, 168.7, 189.8], [502.4, 458.7, 71.9, 70.4],
[378.7, 416.7, 276.5, 304.5], [369.3, 209.4, 198.9, 246.0]])
prediction_dict = {}
for i in range(len(test_list)):
prediction_dict[i] = []
for img_id, k, npy in zip(image_id, output_class, heatmap_output):
data = npy
img_fname = test_list[img_id]
# output avgerge
prediction_sent = '%s %.1f %.1f %.1f %.1f' % (class_index[k], avg_size[k][0], avg_size[k][1], avg_size[k][2], avg_size[k][3])
prediction_dict[img_id].append(prediction_sent)
if np.isnan(data).any():
continue
w_k, h_k = (avg_size[k][2:4] * (256 / 1024)).astype(np.int)
# Find local maxima
neighborhood_size = 100
threshold = .1
data_max = filters.maximum_filter(data, neighborhood_size)
maxima = (data == data_max)
data_min = filters.minimum_filter(data, neighborhood_size)
diff = ((data_max - data_min) > threshold)
maxima[diff == 0] = 0
for _ in range(5):
maxima = binary_dilation(maxima)
labeled, num_objects = ndimage.label(maxima)
slices = ndimage.find_objects(labeled)
xy = np.array(ndimage.center_of_mass(data, labeled, range(1, num_objects+1)))
for pt in xy:
if data[int(pt[0]), int(pt[1])] > np.max(data)*.9:
upper = int(max(pt[0]-(h_k/2), 0.))
left = int(max(pt[1]-(w_k/2), 0.))
right = int(min(left+w_k, img_width))
lower = int(min(upper+h_k, img_height))
prediction_sent = '%s %.1f %.1f %.1f %.1f' % (class_index[k], (left+crop_del)*rescale_factor, \
(upper+crop_del)*rescale_factor, \
(right-left)*rescale_factor, \
(lower-upper)*rescale_factor)
prediction_dict[img_id].append(prediction_sent)
with open("bounding_box.txt","w") as f:
for i in range(len(prediction_dict)):
fname = test_list[i]
prediction = prediction_dict[i]
print(os.path.join(img_folder_path, fname), len(prediction))
f.write('%s %d\n' % (os.path.join(img_folder_path, fname), len(prediction)))
for p in prediction:
print(p)
f.write(p+"\n")