forked from hcmlab/vadnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvadex.py
60 lines (34 loc) · 1.15 KB
/
vadex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
'''
model.py
author: Johannes Wagner <[email protected]>
created: 2018/05/04
Copyright (C) University of Augsburg, Lab for Human Centered Multimedia
Returns energy of a signal (dimensionwise or overall)
'''
import sys, os, json, glob
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import tensorflow as tf
import numpy as np
def getOptions(opts,vars):
pass
def getSampleDimensionOut(dim, opts, vars):
return 5
def getSampleTypeOut(type, types, opts, vars):
if type != types.FLOAT:
print('types other than float are not supported')
return types.UNDEF
return type
def transform_enter(sin, sout, sxtra, board, opts, vars):
pass
def transform(info, sin, sout, sxtra, board, opts, vars):
voiced = sin[1] > sin[0]
for i in range(sout.dim):
sout[i] = 0
sout[0] = sin[0] # noise
sout[1] = sin[1] # voice
if voiced:
sout[2] = sin[2] # male
sout[3] = sin[3] # female
sout[4] = sin[6] # laugh
def transform_flush(sin, sout, sxtra, board, opts, vars):
pass