-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlayer_norm.py
40 lines (31 loc) · 1.36 KB
/
layer_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import sys
import torch
from execution import runner
class BertLayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-12):
super(BertLayerNorm, self).__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.ones(hidden_size))
self.bias = torch.nn.Parameter(torch.zeros(hidden_size))
def forward(self, x):
u = x.mean(2, keepdim=True) # Specifying -1 for reduction dimension causes an error in TorchScript
s = (x - u)
s = s * s
s = s.mean(2, keepdim=True) # Specifying -1 for reduction dimension causes an error in TorchScript
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight * x + self.bias
return x
def input_func(steps, dtype, device) :
return [[torch.randn(128, 128, 1024, dtype=dtype, device=device)] for _ in range(steps)]
def grad_func(steps, dtype, device) :
return [torch.randn(128, 128, 1024, dtype=dtype, device=device) for _ in range(steps)]
class TestModule(torch.nn.Module) :
def __init__(self) :
super(TestModule, self).__init__()
self.ln = BertLayerNorm(1024)
def forward(self, inputs) :
out1 = self.ln(inputs)
return (out1,)
from components.dummy_optimizer import optim_func
if __name__ == "__main__" :
runner.run(sys.argv, 'LayerNorm', TestModule(), optim_func, input_func, grad_func)