-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhuggingface_bert_phase2.py
45 lines (36 loc) · 1.79 KB
/
huggingface_bert_phase2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import math
import importlib
import pandas as pd
import torch
import subprocess
import sys
pd.options.display.max_colwidth=100
from execution import runner
from components.apex_adam_optimizer import optim_func
def pip_install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
try:
importlib.import_module('transformers')
except ModuleNotFoundError:
print("Installing HuggingFace Transformers...")
pip_install('git+https://github.com/huggingface/transformers.git#egg=transformers')
finally:
from transformers import BertConfig, BertForPreTraining
def bert_p2_input_func(steps, dtype, device) :
vocab_size = 30522
sequences = 16
sequence_length = 512
results = []
for _ in range(steps) :
input_ids = torch.randint(0, vocab_size, (sequences, sequence_length), device=device, dtype=torch.int64, requires_grad=False)
attention_mask = torch.randint(0, 2, (sequences, sequence_length), device=device, dtype=torch.int64, requires_grad=False)
labels = torch.randint(0, vocab_size, (sequences, sequence_length), device=device, dtype=torch.int64, requires_grad=False)
next_sentence_labels = torch.randint(0, 2, (sequences,), device=device, dtype=torch.int64, requires_grad=False)
results.append([input_ids, attention_mask, None, None, None, None, labels, next_sentence_labels, None, None, False])
return results
if __name__ == "__main__" :
final_results = []
config = BertConfig.from_pretrained('bert-large-uncased')
final_results += runner.run(sys.argv, 'BertForPreTraining_P2_bert-large-uncased_[seqs=16,seql=512]', BertForPreTraining(config), optim_func, bert_p2_input_func, None)
print('=========================== Final Results ===========================')
print(pd.DataFrame(final_results))