-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgnn_homogenous_conv_dynamic.py
49 lines (44 loc) · 1.5 KB
/
gnn_homogenous_conv_dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import sys
import torch
import torch_geometric
from torch_geometric.datasets import FakeDataset
from torch_geometric.nn import GraphConv
import torch.nn.functional as F
from execution import runner
import os
from torch_geometric.loader import NeighborLoader
import torch_geometric.transforms as T
criterion = torch.nn.CrossEntropyLoss()
torch_geometric.seed.seed_everything(42)
data = FakeDataset(avg_num_nodes=10000).generate_data()
num_classes = torch.numel(torch.unique(data.y))
h_size = 32
batch_size=100
print(data)
def optim_func(params) :
return torch.optim.SGD(params, lr=0.01)
def input_func(steps, dtype, device):
loader = NeighborLoader(
data,
num_neighbors=[25, 25],
batch_size=batch_size,
shuffle=True,
drop_last=False,
replace=True,
transform=T.ToDevice(device),
)
data_list = []
for _ in range(steps):
data_list.append(next(iter(loader)))
return data_list
class TestModule(torch.nn.Module) :
def __init__(self) :
super(TestModule, self).__init__()
self.conv1 = GraphConv(data.x.size()[-1], h_size)
self.conv2 = GraphConv(h_size, num_classes)
def forward(self, x, edge_index, y):
x = F.relu(self.conv1(x, edge_index))
x = self.conv2(x, edge_index)
return [criterion(x[:batch_size], y[:batch_size])]
if __name__ == "__main__" :
runner.run(sys.argv, 'Homogenous_GNN_Conv_dynamic', TestModule(), optim_func, input_func, None)