-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgnn_homogenous_conv.py
33 lines (28 loc) · 1.09 KB
/
gnn_homogenous_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import sys
import torch
import torch_geometric
from torch_geometric.datasets import FakeDataset
from torch_geometric.nn import GraphConv
import torch.nn.functional as F
from execution import runner
criterion = torch.nn.CrossEntropyLoss()
torch_geometric.seed.seed_everything(42)
frozen_data = FakeDataset(avg_num_nodes=20000).generate_data()
num_classes = torch.numel(torch.unique(frozen_data.y))
h_size = 32
print(frozen_data)
def optim_func(params) :
return torch.optim.SGD(params, lr=0.01)
def input_func(steps, dtype, device):
return [frozen_data.to(device) for _ in range(steps)]
class TestModule(torch.nn.Module) :
def __init__(self) :
super(TestModule, self).__init__()
self.conv1 = GraphConv(frozen_data.x.size()[-1], h_size).jittable()
self.conv2 = GraphConv(h_size, num_classes).jittable()
def forward(self, x, edge_index, y):
x = F.relu(self.conv1(x, edge_index))
x = self.conv2(x, edge_index)
return [criterion(x, y)]
if __name__ == "__main__" :
runner.run(sys.argv, 'Homogenous_GNN_Conv', TestModule(), optim_func, input_func, None)