forked from VinayakBorhade/mlTutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_net.py
56 lines (53 loc) · 2.08 KB
/
deep_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/tmp/data/", one_hot=True)
n_nodes_hl1=500
n_nodes_hl2=500
n_nodes_hl3=500
n_classes=10
batch_size=100
x=tf.placeholder('float', [None, 784])
y=tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer={
'weights': tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))
}
hidden_2_layer={
'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))
}
hidden_3_layer={
'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))
}
output_layer={
'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))
}
l1=tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
l1=tf.nn.relu(l1)
l2=tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
l2=tf.nn.relu(l2)
l3=tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
l3=tf.nn.relu(l3)
output=tf.add(tf.matmul(l3, output_layer['weights']), output_layer['biases'])
return output
def train_neural_network(x):
prediction=neural_network_model(x)
cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer=tf.train.AdamOptimizer().minimize(cost)
epochs=10
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(epochs):
epoch_loss=0
for _ in range(int(mnist.train.num_examples/batch_size)):
e_x, e_y= mnist.train.next_batch(batch_size)
_, c= sess.run([optimizer, cost], feed_dict={x:e_x, y:e_y})
epoch_loss+=c
print('Epoch ', epoch, ' completed out of ', epochs, ' loss: ', epoch_loss)
correct=tf.equal(tf.argmax(prediction, 1), tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy: ', accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
train_neural_network(x)