forked from kerlomz/captcha_trainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
677 lines (595 loc) · 26.6 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <[email protected]>
import os
import json
import platform
import re
import yaml
from category import *
from constants import *
from exception import exception, ConfigException
# Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
# If you have a GPU, you shouldn't care about AVX support.
# Just disables the warning, doesn't enable AVX/FMA
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
PLATFORM = platform.system()
# PATH_SPLIT = "\\" if PLATFORM == "Windows" else "/"
PATH_SPLIT = "/"
MODEL_CONFIG_NAME = "model.yaml"
IGNORE_FILES = ['.DS_Store']
CORE_VERSION = '20200530'
NETWORK_MAP = {
'CNNX': CNNNetwork.CNNX,
'CNN5': CNNNetwork.CNN5,
'ResNetTiny': CNNNetwork.ResNetTiny,
'ResNet50': CNNNetwork.ResNet50,
'DenseNet': CNNNetwork.DenseNet,
'MobileNetV2': CNNNetwork.MobileNetV2,
'LSTM': RecurrentNetwork.LSTM,
'BiLSTM': RecurrentNetwork.BiLSTM,
'GRU': RecurrentNetwork.GRU,
'BiGRU': RecurrentNetwork.BiGRU,
'LSTMcuDNN': RecurrentNetwork.LSTMcuDNN,
'BiLSTMcuDNN': RecurrentNetwork.BiLSTMcuDNN,
'GRUcuDNN': RecurrentNetwork.GRUcuDNN,
'NoRecurrent': RecurrentNetwork.NoRecurrent
}
BUILT_IN_CATEGORY_MAP = {
'NUMERIC': SimpleCharset.NUMERIC,
'ALPHANUMERIC': SimpleCharset.ALPHANUMERIC,
'ALPHANUMERIC_LOWER': SimpleCharset.ALPHANUMERIC_LOWER,
'ALPHANUMERIC_UPPER': SimpleCharset.ALPHANUMERIC_UPPER,
'ALPHABET_LOWER': SimpleCharset.ALPHABET_LOWER,
'ALPHABET_UPPER': SimpleCharset.ALPHABET_UPPER,
'ALPHABET': SimpleCharset.ALPHABET,
'ARITHMETIC': SimpleCharset.ARITHMETIC,
'FLOAT': SimpleCharset.FLOAT,
'CHS_3500': SimpleCharset.CHS_3500,
'ALPHANUMERIC_CHS_3500_LOWER': SimpleCharset.ALPHANUMERIC_CHS_3500_LOWER,
}
OPTIMIZER_MAP = {
'RAdam': Optimizer.RAdam,
'Adam': Optimizer.Adam,
'AdaBound': Optimizer.AdaBound,
'Momentum': Optimizer.Momentum,
'SGD': Optimizer.SGD,
'AdaGrad': Optimizer.AdaGrad,
'RMSProp': Optimizer.RMSProp
}
MODEL_SCENE_MAP = {
'Classification': ModelScene.Classification
}
LOSS_FUNC_MAP = {
'CTC': LossFunction.CTC,
'CrossEntropy': LossFunction.CrossEntropy
}
COMPILE_MODEL_MAP = {
ModelType.PB: ".pb",
ModelType.ONNX: ".onnx",
ModelType.TFLITE: ".tflite"
}
RESIZE_MAP = {
LossFunction.CTC: lambda x, y: [None, y],
LossFunction.CrossEntropy: lambda x, y: [x, y]
}
LABEL_FROM_MAP = {
'XML': LabelFrom.XML,
'LMDB': LabelFrom.LMDB,
'FileName': LabelFrom.FileName,
'TXT': LabelFrom.TXT
}
EXCEPT_FORMAT_MAP = {
ModelField.Image: 'png',
ModelField.Text: 'csv'
}
MODEL_FIELD_MAP = {
'Image': ModelField.Image,
'Text': ModelField.Text
}
OUTPUT_SHAPE1_MAP = {
CNNNetwork.CNN5: [16, 64],
CNNNetwork.CNNX: [8, 64],
CNNNetwork.ResNetTiny: [16, 1024],
CNNNetwork.ResNet50: [16, 2048],
CNNNetwork.DenseNet: [32, 2048],
CNNNetwork.MobileNetV2: [32, 1200]
}
class DataAugmentationEntity:
binaryzation: object = -1
median_blur: int = -1
gaussian_blur: int = -1
equalize_hist: bool = False
laplace: bool = False
warp_perspective: bool = False
rotate: int = -1
sp_noise: float = -1.0
brightness: bool = False
saturation: bool = False
hue: bool = False
gamma: bool = False
channel_swap: bool = False
random_blank: int = -1
random_transition: int = -1
random_captcha: dict = {"Enable": False, "FontPath": ""}
class PretreatmentEntity:
binaryzation: object = -1
concat_frames: object = -1
blend_frames: object = -1
replace_transparent: bool = True
horizontal_stitching: bool = False
class ModelConfig:
"""MODEL"""
model_root: dict
model_name: str
model_tag: str
model_field_param: str
model_scene_param: str
"""SYSTEM"""
system_root: dict
memory_usage: float
save_model: str
save_checkpoint: str
"""FIELD PARAM - IMAGE"""
field_root: dict
category_param: list or str
image_channel: int
image_width: int
image_height: int
resize: list
max_label_num: int
auto_padding: bool
output_split: str
"""NEURAL NETWORK"""
neu_network_root: dict
neu_cnn_param: str
neu_recurrent_param: str
units_num: int
neu_optimizer_param: str
output_layer: dict
loss_func_param: str
decoder: str
"""LABEL"""
label_root: dict
label_from_param: str
extract_regex: str
label_split: str
"""PATH"""
trains_root: dict
dataset_path_root: dict
source_path_root: dict
trains_path: dict = {DatasetType.TFRecords: [], DatasetType.Directory: []}
validation_path: dict = {DatasetType.TFRecords: [], DatasetType.Directory: []}
dataset_map = {
RunMode.Trains: trains_path,
RunMode.Validation: validation_path
}
validation_set_num: int
"""TRAINS"""
trains_save_steps: int
trains_validation_steps: int
trains_end_acc: float
trains_end_cost: float
trains_end_epochs: int
trains_learning_rate: float
batch_size: int
validation_batch_size: int
"""DATA AUGMENTATION"""
data_augmentation_root: dict
da_binaryzation: list
da_median_blur: int
da_gaussian_blur: int
da_equalize_hist: bool
da_laplace: bool
da_rotate: int
da_warp_perspective: bool
da_sp_noise: float
da_brightness: bool
da_saturation: bool
da_hue: bool
da_gamma: bool
da_channel_swap: bool
da_random_blank: int
da_random_transition: int
da_random_captcha: dict = {"Enable": False, "FontPath": ""}
"""PRETREATMENT"""
pretreatment_root: dict
pre_binaryzation: int
pre_replace_transparent: bool
pre_horizontal_stitching: bool
pre_concat_frames: object
pre_blend_frames: object
"""COMPILE_MODEL"""
compile_model_path: str
def __init__(self, project_name, project_path=None, is_dev=True, **argv):
self.is_dev = is_dev
self.project_path = project_path if project_path else "./projects/{}".format(project_name)
self.output_path = os.path.join(self.project_path, 'out')
self.compile_conf_path = os.path.join(self.output_path, 'model')
self.compile_conf_path = os.path.join(self.compile_conf_path, "{}_model.yaml".format(project_name))
self.model_root_path = os.path.join(self.project_path, 'model')
self.model_conf_path = os.path.join(self.project_path, MODEL_CONFIG_NAME)
self.dataset_root_path = os.path.join(self.project_path, 'dataset')
self.checkpoint_tag = 'checkpoint'
if not os.path.exists(self.project_path):
os.makedirs(self.project_path)
if not os.path.exists(self.model_root_path):
os.makedirs(self.model_root_path)
if not os.path.exists(self.output_path):
os.makedirs(self.output_path)
if not os.path.exists(self.dataset_root_path):
os.makedirs(self.dataset_root_path)
if len(argv) > 0:
self.new(**argv)
else:
self.read_conf()
def read_conf(self):
"""MODEL"""
self.model_root = self.conf['Model']
self.model_name = self.model_root.get('ModelName')
self.model_tag = '{model_name}.model'.format(model_name=self.model_name)
self.model_field_param = self.model_root.get('ModelField')
self.model_scene_param = self.model_root.get('ModelScene')
"""SYSTEM"""
self.system_root = self.conf['System']
self.memory_usage = self.system_root.get('MemoryUsage')
self.model_version = self.system_root.get("Version")
self.save_model = os.path.join(self.model_root_path, self.model_tag)
self.save_checkpoint = os.path.join(self.model_root_path, self.checkpoint_tag)
"""FIELD PARAM - IMAGE"""
self.field_root = self.conf['FieldParam']
self.category_param = self.field_root.get('Category')
self.image_channel = self.field_root.get('ImageChannel')
self.image_width = self.field_root.get('ImageWidth')
self.image_height = self.field_root.get('ImageHeight')
self.resize = self.field_root.get('Resize')
self.max_label_num = self.field_root.get('MaxLabelNum')
self.auto_padding = self.field_root.get('AutoPadding')
self.output_split = self.field_root.get('OutputSplit')
"""NEURAL NETWORK"""
self.neu_network_root = self.conf['NeuralNet']
self.neu_cnn_param = self.neu_network_root.get('CNNNetwork')
self.neu_recurrent_param = self.neu_network_root.get('RecurrentNetwork')
self.neu_recurrent_param = self.neu_recurrent_param if self.neu_recurrent_param else 'NoRecurrent'
self.units_num = self.neu_network_root.get('UnitsNum')
self.neu_optimizer_param = self.neu_network_root.get('Optimizer')
self.neu_optimizer_param = self.neu_optimizer_param if self.neu_optimizer_param else 'RAdam'
self.output_layer = self.neu_network_root.get('OutputLayer')
self.loss_func_param = self.output_layer.get('LossFunction')
self.decoder = self.output_layer.get('Decoder')
"""LABEL"""
self.label_root = self.conf.get('Label')
self.label_from_param = self.label_root.get('LabelFrom')
self.extract_regex = self.label_root.get('ExtractRegex')
self.extract_regex = self.extract_regex if self.extract_regex else ".*?(?=_)"
self.label_split = self.label_root.get('LabelSplit')
"""PATH"""
self.trains_root = self.conf['Trains']
self.dataset_path_root = self.trains_root.get('DatasetPath')
self.trains_path[DatasetType.TFRecords]: list = self.dataset_path_root.get('Training')
self.validation_path[DatasetType.TFRecords]: list = self.dataset_path_root.get('Validation')
self.source_path_root = self.trains_root.get('SourcePath')
self.trains_path[DatasetType.Directory]: list = self.source_path_root.get('Training')
self.validation_path[DatasetType.Directory]: list = self.source_path_root.get('Validation')
self.validation_set_num: int = self.trains_root.get('ValidationSetNum')
# self.validation_set_num = self.validation_set_num if self.validation_set_num else 500
"""TRAINS"""
self.trains_save_steps = self.trains_root.get('SavedSteps')
self.trains_validation_steps = self.trains_root.get('ValidationSteps')
self.trains_end_acc = self.trains_root.get('EndAcc')
self.trains_end_cost = self.trains_root.get('EndCost')
self.trains_end_cost = self.trains_end_cost if self.trains_end_cost else 1
self.trains_end_epochs = self.trains_root.get('EndEpochs')
self.trains_end_epochs = self.trains_end_epochs if self.trains_end_epochs else 2
self.trains_learning_rate = self.trains_root.get('LearningRate')
self.batch_size = self.trains_root.get('BatchSize')
self.batch_size = self.batch_size if self.batch_size else 64
self.validation_batch_size = self.trains_root.get('ValidationBatchSize')
self.validation_batch_size = self.validation_batch_size if self.validation_batch_size else 300
"""DATA AUGMENTATION"""
self.data_augmentation_root = self.conf['DataAugmentation']
self.da_binaryzation = self.data_augmentation_root.get('Binaryzation')
self.da_median_blur = self.data_augmentation_root.get('MedianBlur')
self.da_gaussian_blur = self.data_augmentation_root.get('GaussianBlur')
self.da_equalize_hist = self.data_augmentation_root.get('EqualizeHist')
self.da_laplace = self.data_augmentation_root.get('Laplace')
self.da_rotate = self.data_augmentation_root.get('Rotate')
self.da_warp_perspective = self.data_augmentation_root.get('WarpPerspective')
self.da_sp_noise = self.data_augmentation_root.get('PepperNoise')
self.da_brightness = self.data_augmentation_root.get('Brightness')
self.da_saturation = self.data_augmentation_root.get('Saturation')
self.da_hue = self.data_augmentation_root.get('Hue')
self.da_gamma = self.data_augmentation_root.get('Gamma')
self.da_channel_swap = self.data_augmentation_root.get('ChannelSwap')
self.da_random_blank = self.data_augmentation_root.get('RandomBlank')
self.da_random_transition = self.data_augmentation_root.get('RandomTransition')
self.da_random_captcha = self.data_augmentation_root.get('RandomCaptcha')
if not self.da_random_captcha:
self.da_random_captcha = {"Enable": False, "FontPath": ""}
"""PRETREATMENT"""
self.pretreatment_root = self.conf['Pretreatment']
self.pre_binaryzation = self.pretreatment_root.get('Binaryzation')
self.pre_replace_transparent = self.pretreatment_root.get("ReplaceTransparent")
self.pre_horizontal_stitching = self.pretreatment_root.get("HorizontalStitching")
self.pre_concat_frames = self.pretreatment_root.get('ConcatFrames')
self.pre_blend_frames = self.pretreatment_root.get('BlendFrames')
"""COMPILE_MODEL"""
self.compile_model_path = os.path.join(self.output_path, 'graph')
self.compile_model_path = self.compile_model_path.replace("\\", "/")
self.check_field()
@property
def model_field(self) -> ModelField:
return ModelConfig.param_convert(
source=self.model_field_param,
param_map=MODEL_FIELD_MAP,
text="Current model field ({model_field}) is not supported".format(model_field=self.model_field_param),
code=ConfigException.MODEL_FIELD_NOT_SUPPORTED
)
@property
def model_scene(self) -> ModelScene:
return ModelConfig.param_convert(
source=self.model_scene_param,
param_map=MODEL_SCENE_MAP,
text="Current model scene ({model_scene}) is not supported".format(model_scene=self.model_scene_param),
code=ConfigException.MODEL_SCENE_NOT_SUPPORTED
)
@property
def neu_cnn(self) -> CNNNetwork:
return ModelConfig.param_convert(
source=self.neu_cnn_param,
param_map=NETWORK_MAP,
text="This cnn layer ({param}) is not supported at this time.".format(param=self.neu_cnn_param),
code=ConfigException.NETWORK_NOT_SUPPORTED
)
@property
def neu_recurrent(self) -> RecurrentNetwork:
return ModelConfig.param_convert(
source=self.neu_recurrent_param,
param_map=NETWORK_MAP,
text="Current recurrent layer ({recurrent}) is not supported".format(recurrent=self.neu_recurrent_param),
code=ConfigException.NETWORK_NOT_SUPPORTED
)
@property
def neu_optimizer(self) -> Optimizer:
return ModelConfig.param_convert(
source=self.neu_optimizer_param,
param_map=OPTIMIZER_MAP,
text="This optimizer ({param}) is not supported at this time.".format(param=self.neu_optimizer_param),
code=ConfigException.NETWORK_NOT_SUPPORTED
)
@property
def loss_func(self) -> LossFunction:
return ModelConfig.param_convert(
source=self.loss_func_param,
param_map=LOSS_FUNC_MAP,
text="This type of loss function ({loss}) is not supported at this time.".format(loss=self.loss_func_param),
code=ConfigException.LOSS_FUNC_NOT_SUPPORTED,
)
@property
def label_from(self) -> LabelFrom:
return ModelConfig.param_convert(
source=self.label_from_param,
param_map=LABEL_FROM_MAP,
text="This type of label from ({lf}) is not supported at this time.".format(lf=self.label_from_param),
code=ConfigException.ERROR_LABEL_FROM,
)
@property
def category(self) -> list:
category_value = category_extract(self.category_param)
return SPACE_TOKEN + category_value
@property
def category_num(self) -> int:
return len(self.category)
@staticmethod
def param_convert(source, param_map: dict, text, code, default=None):
if source is None:
return default
if source not in param_map.keys():
exception(text, code)
return param_map[source]
def check_field(self):
if not os.path.exists(self.model_conf_path):
exception(
'Configuration File "{}" No Found. '
'If it is used for the first time, please copy one according to model.template as {}'.format(
MODEL_CONFIG_NAME,
MODEL_CONFIG_NAME
), ConfigException.MODEL_CONFIG_PATH_NOT_EXIST
)
if not os.path.exists(self.model_root_path):
os.makedirs(self.model_root_path)
model_file = ModelConfig.checkpoint(self.model_name, self.model_root_path)
checkpoint = 'model_checkpoint_path: {}\nall_model_checkpoint_paths: {}'.format(model_file, model_file)
with open(self.save_checkpoint, 'w') as f:
f.write(checkpoint)
@staticmethod
def checkpoint(_name, _path):
file_list = os.listdir(_path)
checkpoint_group = [
'"{}"'.format(i.split(".meta")[0]) for i in file_list if
_name + ".model" in i and i.endswith('.meta')
]
if not checkpoint_group:
return None
checkpoint_step = [int(re.search('(?<=model-).*?(?=")', i).group()) for i in checkpoint_group]
return checkpoint_group[checkpoint_step.index(max(checkpoint_step))]
@property
def conf(self) -> dict:
with open(self.model_conf_path if self.is_dev else self.compile_conf_path, 'r', encoding="utf-8") as sys_fp:
sys_stream = sys_fp.read()
return yaml.load(sys_stream, Loader=yaml.SafeLoader)
@staticmethod
def list_param(params, intent=6):
if params is None:
params = []
if isinstance(params, str):
params = [params]
result = "".join(["\n{}- ".format(' ' * intent) + i for i in params])
return result
@staticmethod
def dict_param(params: dict, intent=6):
if params is None:
params = {}
result = "".join(["\n{} ".format(' ' * intent) + "{}: {}".format(k, v) for k, v in params.items()])
return result
@staticmethod
def val_filter(val):
if isinstance(val, str) and len(val) == 1:
val = "'{}'".format(val)
elif val is None:
val = 'null'
return val
def update(self, model_conf_path=None, model_name=None):
with open("model.template", encoding="utf8") as f:
base_config = "".join(f.readlines())
model = base_config.format(
MemoryUsage=self.memory_usage,
CNNNetwork=self.neu_cnn.value,
RecurrentNetwork=self.val_filter(self.neu_recurrent_param),
UnitsNum=self.units_num,
Optimizer=self.neu_optimizer.value,
LossFunction=self.loss_func.value,
Decoder=self.decoder,
ModelName=model_name if model_name else self.model_name,
ModelField=self.model_field.value,
ModelScene=self.model_scene.value,
Category=self.category_param,
Resize=json.dumps(self.resize),
ImageChannel=self.image_channel,
ImageWidth=self.image_width,
ImageHeight=self.image_height,
MaxLabelNum=self.max_label_num,
AutoPadding=self.auto_padding,
OutputSplit=self.val_filter(self.output_split),
LabelFrom=self.label_from.value,
ExtractRegex=self.val_filter(self.extract_regex),
LabelSplit=self.val_filter(self.label_split),
DatasetTrainsPath=self.list_param(self.trains_path[DatasetType.TFRecords], intent=6),
DatasetValidationPath=self.list_param(self.validation_path[DatasetType.TFRecords], intent=6),
SourceTrainPath=self.list_param(self.trains_path[DatasetType.Directory], intent=6),
SourceValidationPath=self.list_param(self.validation_path[DatasetType.Directory], intent=6),
ValidationSetNum=self.validation_set_num,
SavedSteps=self.trains_save_steps,
ValidationSteps=self.trains_validation_steps,
EndAcc=self.trains_end_acc,
EndCost=self.trains_end_cost,
EndEpochs=self.trains_end_epochs,
BatchSize=self.batch_size,
ValidationBatchSize=self.validation_batch_size,
LearningRate=self.trains_learning_rate,
DA_Binaryzation=self.da_binaryzation,
DA_MedianBlur=self.da_median_blur,
DA_GaussianBlur=self.da_gaussian_blur,
DA_EqualizeHist=self.da_equalize_hist,
DA_Laplace=self.da_laplace,
DA_WarpPerspective=self.da_warp_perspective,
DA_Rotate=self.da_rotate,
DA_PepperNoise=self.da_sp_noise,
DA_Brightness=self.da_brightness,
DA_Saturation=self.da_saturation,
DA_Hue=self.da_hue,
DA_Gamma=self.da_gamma,
DA_ChannelSwap=self.da_channel_swap,
DA_RandomBlank=self.da_random_blank,
DA_RandomTransition=self.da_random_transition,
DA_RandomCaptcha=self.dict_param(self.da_random_captcha, intent=4),
Pre_Binaryzation=self.pre_binaryzation,
Pre_ReplaceTransparent=self.pre_replace_transparent,
Pre_HorizontalStitching=self.pre_horizontal_stitching,
Pre_ConcatFrames=self.pre_concat_frames,
Pre_BlendFrames=self.pre_blend_frames,
)
with open(model_conf_path if model_conf_path else self.model_conf_path, "w", encoding="utf8") as f:
f.write(model)
def output_config(self, target_model_name=None):
compiled_config_dir_path = os.path.join(self.output_path, "model")
if not os.path.exists(compiled_config_dir_path):
os.makedirs(compiled_config_dir_path)
compiled_config_path = os.path.join(compiled_config_dir_path, "{}_model.yaml".format(self.model_name))
self.update(model_conf_path=compiled_config_path, model_name=target_model_name)
def dataset_increasing_name(self, mode: RunMode):
dataset_group = os.listdir(self.dataset_root_path)
if len(dataset_group) < 1:
return "Trains.0.tfrecords" if mode == RunMode.Trains else "Validation.0.tfrecords"
name_split = [i.split(".") for i in dataset_group if mode.value in i]
last_index = max([int(i[1]) for i in name_split])
current_index = last_index + 1
name_prefix = name_split[0][0]
name_suffix = name_split[0][2]
return "{}.{}.{}".format(name_prefix, current_index, name_suffix)
def new(self, **argv):
self.memory_usage = argv.get('MemoryUsage')
self.neu_cnn_param = argv.get('CNNNetwork')
self.neu_recurrent_param = argv.get('RecurrentNetwork')
self.units_num = argv.get('UnitsNum')
self.neu_optimizer_param = argv.get('Optimizer')
self.loss_func_param = argv.get('LossFunction')
self.decoder = argv.get('Decoder')
self.model_name = argv.get('ModelName')
self.model_field_param = argv.get('ModelField')
self.model_scene_param = argv.get('ModelScene')
if isinstance(argv.get('Category'), list):
self.category_param = json.dumps(argv.get('Category'), ensure_ascii=False)
else:
self.category_param = argv.get('Category')
self.resize = argv.get('Resize')
self.image_channel = argv.get('ImageChannel')
self.image_width = argv.get('ImageWidth')
self.image_height = argv.get('ImageHeight')
self.max_label_num = argv.get('MaxLabelNum')
self.auto_padding = argv.get('AutoPadding')
self.output_split = argv.get('OutputSplit')
self.label_from_param = argv.get('LabelFrom')
self.extract_regex = argv.get('ExtractRegex')
self.label_split = argv.get('LabelSplit')
self.trains_path[DatasetType.TFRecords] = argv.get('DatasetTrainsPath')
self.validation_path[DatasetType.TFRecords] = argv.get('DatasetValidationPath')
self.trains_path[DatasetType.Directory] = argv.get('SourceTrainPath')
self.validation_path[DatasetType.Directory] = argv.get('SourceValidationPath')
self.validation_set_num = argv.get('ValidationSetNum')
self.trains_save_steps = argv.get('SavedSteps')
self.trains_validation_steps = argv.get('ValidationSteps')
self.trains_end_acc = argv.get('EndAcc')
self.trains_end_cost = argv.get('EndCost')
self.trains_end_epochs = argv.get('EndEpochs')
self.batch_size = argv.get('BatchSize')
self.validation_batch_size = argv.get('ValidationBatchSize')
self.trains_learning_rate = argv.get('LearningRate')
self.da_binaryzation = argv.get('DA_Binaryzation')
self.da_median_blur = argv.get('DA_MedianBlur')
self.da_gaussian_blur = argv.get('DA_GaussianBlur')
self.da_equalize_hist = argv.get('DA_EqualizeHist')
self.da_laplace = argv.get('DA_Laplace')
self.da_warp_perspective = argv.get('DA_WarpPerspective')
self.da_rotate = argv.get('DA_Rotate')
self.da_sp_noise = argv.get('DA_PepperNoise')
self.da_brightness = argv.get('DA_Brightness')
self.da_saturation = argv.get('DA_Saturation')
self.da_hue = argv.get('DA_Hue')
self.da_gamma = argv.get('DA_Gamma')
self.da_channel_swap = argv.get('DA_ChannelSwap')
self.da_random_blank = argv.get('DA_RandomBlank')
self.da_random_transition = argv.get('DA_RandomTransition')
self.da_random_captcha = argv.get('DA_RandomCaptcha')
self.pre_binaryzation = argv.get('Pre_Binaryzation')
self.pre_replace_transparent = argv.get('Pre_ReplaceTransparent')
self.pre_horizontal_stitching = argv.get('Pre_HorizontalStitching')
self.pre_concat_frames = argv.get('Pre_ConcatFrames')
self.pre_blend_frames = argv.get('Pre_BlendFrames')
def println(self):
print('Loading Configuration...')
print('---------------------------------------------------------------------------------')
print("PROJECT_PATH", self.project_path)
print('MODEL_PATH:', self.save_model)
print('COMPILE_MODEL_PATH:', self.compile_model_path)
print('CATEGORY_NUM:', self.category_num)
print('IMAGE_WIDTH: {}, IMAGE_HEIGHT: {}'.format(
self.image_width, self.image_height)
)
print('NEURAL NETWORK: {}'.format(self.neu_network_root))
print('---------------------------------------------------------------------------------')
if __name__ == '__main__':
name = "demo"
c = ModelConfig(project_name=name)
c.println()
c.update()