forked from anxiangsir/urban_seg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
deeplab_v3.py
240 lines (198 loc) · 9.63 KB
/
deeplab_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""ResNet model.
Related papers:
https://arxiv.org/pdf/1603.05027v2.pdf
https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1605.07146v1.pdf
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.training import moving_averages
import tensorflow as tf
# 为了finetune resnet_v2_50 对数据每个通道中心化
_R_MEAN = 123.68
_G_MEAN = 116.78
_B_MEAN = 103.94
class Deeplab_v3():
def __init__(self,
batch_norm_decay=0.99,
batch_norm_epsilon=1e-3,):
self._batch_norm_decay = batch_norm_decay
self._batch_norm_epsilon = batch_norm_epsilon
# 模型训练开关占位符
self._is_training = tf.placeholder(tf.bool, name='is_training')
self.num_class = 5
self.filters = [64, 256, 512, 1024, 2048]
self.strides = [2, 2, 1, 1]
self.n = [3, 4, 6, 3]
def forward_pass(self, x):
"""Build the core model within the graph"""
with tf.variable_scope('resnet_v2_50', reuse=tf.AUTO_REUSE):
size = tf.shape(x)[1:3]
x = x - [_R_MEAN, _G_MEAN, _B_MEAN]
x = self._conv(x, 7, 64, 2, 'conv1', False, False)
x = self._max_pool(x, 3, 2, 'max')
res_func = self._bottleneck_residual_v2
for i in range(4):
with tf.variable_scope('block%d' % (i + 1)):
for j in range(self.n[i]):
with tf.variable_scope('unit_%d' % (j + 1)):
if j == 0:
x = res_func(x, self.filters[i], self.filters[i+1], 1)
elif j == self.n[i] - 1:
x = res_func(x, self.filters[i+1], self.filters[i+1], self.strides[i])
else:
x = res_func(x, self.filters[i+1], self.filters[i+1], 1)
tf.logging.info('the shape of features after block%d is %s' % (i+1, x.get_shape()))
# DeepLab_v3的部分
with tf.variable_scope('DeepLab_v3', reuse=tf.AUTO_REUSE):
x = self._atrous_spatial_pyramid_pooling(x)
x = self._conv(x, 1, 5, 1, 'logits', False, False)
x = tf.image.resize_bilinear(x, size)
return x
def _A_ASPP(self):
pass
def _atrous_spatial_pyramid_pooling(self, x):
"""空洞空间金字塔池化
"""
with tf.variable_scope('ASSP_layers'):
feature_map_size = tf.shape(x)
image_level_features = tf.reduce_mean(x, [1, 2], keep_dims=True)
image_level_features = self._conv(image_level_features, 1, 256, 1, 'global_avg_pool', True)
image_level_features = tf.image.resize_bilinear(image_level_features, (feature_map_size[1],
feature_map_size[2]))
at_pool1x1 = self._conv(x, kernel_size=1, filters=256, strides=1, scope='assp1', batch_norm=True)
at_pool3x3_1 = self._conv(x, kernel_size=3, filters=256, strides=1, scope='assp2', batch_norm=True, rate=6)
at_pool3x3_2 = self._conv(x, kernel_size=3, filters=256, strides=1, scope='assp3', batch_norm=True, rate=12)
at_pool3x3_3 = self._conv(x, kernel_size=3, filters=256, strides=1, scope='assp4', batch_norm=True, rate=18)
net = tf.concat((image_level_features, at_pool1x1, at_pool3x3_1, at_pool3x3_2, at_pool3x3_3), axis=3)
net = self._conv(net, kernel_size=1, filters=256, strides=1, scope='concat', batch_norm=True)
return net
def _bottleneck_residual_v2(self,
x,
in_filter,
out_filter,
stride,):
"""Bottleneck residual unit with 3 sub layers, plan B shortcut."""
with tf.variable_scope('bottleneck_v2'):
origin_x = x
with tf.variable_scope('preact'):
preact = self._batch_norm(x)
preact = self._relu(preact)
residual = self._conv(preact, 1, out_filter // 4, stride, 'conv1', True, True)
residual = self._conv(residual, 3, out_filter // 4, 1, 'conv2', True, True)
residual = self._conv(residual, 1, out_filter, 1, 'conv3', False, False)
if in_filter != out_filter:
short_cut = self._conv(preact, 1, out_filter, stride, 'shortcut', False, False)
else:
short_cut = self._subsample(origin_x, stride, 'shortcut')
x = tf.add(residual, short_cut)
return x
def _conv(self,
x,
kernel_size,
filters,
strides,
scope,
batch_norm=False,
activation=False,
rate=None
):
"""Convolution."""
with tf.variable_scope(scope):
x_shape = x.get_shape().as_list()
w = tf.get_variable(name='weights',
shape=[kernel_size, kernel_size, x_shape[3], filters])
if rate == None:
x = tf.nn.conv2d(input=x,
filter=w,
padding='SAME',
strides=[1, strides, strides, 1],
name='conv', )
else:
x = tf.nn.atrous_conv2d(value=x,
filters=w,
padding='SAME',
name='conv',
rate=rate)
if batch_norm:
with tf.variable_scope('BatchNorm'):
x = self._batch_norm(x)
else:
b = tf.get_variable(name='biases', shape=[filters])
x = x + b
if activation:
x = tf.nn.relu(x)
return x
def _batch_norm(self, x):
x_shape = x.get_shape()
params_shape = x_shape[-1:]
axis = list(range(len(x_shape) - 1))
beta = tf.get_variable(name='beta',
shape=params_shape,
initializer=tf.zeros_initializer)
gamma = tf.get_variable(name='gamma',
shape=params_shape,
initializer=tf.ones_initializer)
moving_mean = tf.get_variable(name='moving_mean',
shape=params_shape,
initializer=tf.zeros_initializer,
trainable=False)
moving_variance = tf.get_variable(name='moving_variance',
shape=params_shape,
initializer=tf.ones_initializer,
trainable=False)
tf.add_to_collection('BN_MEAN_VARIANCE', moving_mean)
tf.add_to_collection('BN_MEAN_VARIANCE', moving_variance)
# These ops will only be preformed when training.
mean, variance = tf.nn.moments(x, axis)
update_moving_mean = moving_averages.assign_moving_average(moving_mean,
mean,
self._batch_norm_decay,
name='MovingAvgMean')
update_moving_variance = moving_averages.assign_moving_average(moving_variance,
variance,
self._batch_norm_decay,
name='MovingAvgVariance')
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_moving_mean)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_moving_variance)
mean, variance = tf.cond(
pred=self._is_training,
true_fn=lambda: (mean, variance),
false_fn=lambda: (moving_mean, moving_variance)
)
x = tf.nn.batch_normalization(x, mean, variance, beta, gamma, self._batch_norm_epsilon)
return x
def _relu(self, x):
return tf.nn.relu(x)
def _max_pool(self, x, pool_size, stride, scope):
with tf.name_scope('max_pool') as name_scope:
x = tf.layers.max_pooling2d(
x, pool_size, stride, 'SAME', name=scope
)
return x
def _avg_pool(self, x, pool_size, stride):
with tf.name_scope('avg_pool') as name_scope:
x = tf.layers.average_pooling2d(
x, pool_size, stride, 'SAME')
tf.logging.info('image after unit %s: %s', name_scope, x.get_shape())
return x
def _global_avg_pool(self, x):
with tf.name_scope('global_avg_pool') as name_scope:
assert x.get_shape().ndims == 4
x = tf.reduce_mean(x, [1, 2])
tf.logging.info('image after unit %s: %s', name_scope, x.get_shape())
return x
def _concat(self, x, y):
with tf.name_scope('concat') as name_scope:
assert x.get_shape().ndims == 4
assert y.get_shape().ndims == 4
x = tf.concat([x, y], 3)
tf.logging.info('image after unit %s: %s', name_scope, x.get_shape())
return x
def _subsample(self, inputs, stride, scope=None):
"""Subsamples the input along the spatial dimensions."""
if stride == 1:
return inputs
else:
return self._max_pool(inputs, 3, stride, scope)