-
Notifications
You must be signed in to change notification settings - Fork 2
/
run.c
433 lines (348 loc) · 11.2 KB
/
run.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <unistd.h>
#include "allvars.h"
#include "proto.h"
/*! \file run.c
* \brief iterates over timesteps, main loop
*/
/*! This routine contains the main simulation loop that iterates over single
* timesteps. The loop terminates when the cpu-time limit is reached, when a
* `stop' file is found in the output directory, or when the simulation ends
* because we arrived at TimeMax.
*/
void run(void)
{
FILE *fd;
int stopflag = 0;
char stopfname[200], contfname[200];
double t0, t1;
sprintf(stopfname, "%sstop", All.OutputDir);
sprintf(contfname, "%scont", All.OutputDir);
unlink(contfname);
do /* main loop */
{
t0 = second();
find_next_sync_point_and_drift(); /* find next synchronization point and drift particles to this time.
* If needed, this function will also write an output file
* at the desired time.
*/
every_timestep_stuff(); /* write some info to log-files */
domain_Decomposition(); /* do domain decomposition if needed */
compute_accelerations(0); /* compute accelerations for
* the particles that are to be advanced
*/
/* check whether we want a full energy statistics */
if((All.Time - All.TimeLastStatistics) >= All.TimeBetStatistics)
{
#ifdef COMPUTE_POTENTIAL_ENERGY
compute_potential();
#endif
energy_statistics(); /* compute and output energy statistics */
All.TimeLastStatistics += All.TimeBetStatistics;
}
advance_and_find_timesteps(); /* 'kick' active particles in
* momentum space and compute new
* timesteps for them
*/
All.NumCurrentTiStep++;
/* Check whether we need to interrupt the run */
if(ThisTask == 0)
{
/* Is the stop-file present? If yes, interrupt the run. */
if((fd = fopen(stopfname, "r")))
{
fclose(fd);
stopflag = 1;
unlink(stopfname);
}
/* are we running out of CPU-time ? If yes, interrupt run. */
if(CPUThisRun > 0.85 * All.TimeLimitCPU)
{
printf("reaching time-limit. stopping.\n");
stopflag = 2;
}
}
MPI_Bcast(&stopflag, 1, MPI_INT, 0, MPI_COMM_WORLD);
if(stopflag)
{
restart(0); /* write restart file */
MPI_Barrier(MPI_COMM_WORLD);
if(stopflag == 2 && ThisTask == 0)
{
if((fd = fopen(contfname, "w")))
fclose(fd);
}
if(stopflag == 2 && All.ResubmitOn && ThisTask == 0)
{
close_outputfiles();
system(All.ResubmitCommand);
}
return;
}
/* is it time to write a regular restart-file? (for security) */
if(ThisTask == 0)
{
if((CPUThisRun - All.TimeLastRestartFile) >= All.CpuTimeBetRestartFile)
{
All.TimeLastRestartFile = CPUThisRun;
stopflag = 3;
}
else
stopflag = 0;
}
MPI_Bcast(&stopflag, 1, MPI_INT, 0, MPI_COMM_WORLD);
if(stopflag == 3)
{
restart(0); /* write an occasional restart file */
stopflag = 0;
}
t1 = second();
All.CPU_Total += timediff(t0, t1);
CPUThisRun += timediff(t0, t1);
}
while(All.Ti_Current < TIMEBASE && All.Time <= All.TimeMax);
restart(0);
savepositions(All.SnapshotFileCount++); /* write a last snapshot
* file at final time (will
* be overwritten if
* All.TimeMax is increased
* and the run is continued)
*/
}
/*! This function finds the next synchronization point of the system (i.e. the
* earliest point of time any of the particles needs a force computation),
* and drifts the system to this point of time. If the system drifts over
* the desired time of a snapshot file, the function will drift to this
* moment, generate an output, and then resume the drift.
*/
void find_next_sync_point_and_drift(void)
{
int n, min, min_glob, flag, *temp;
double timeold;
double t0, t1;
t0 = second();
timeold = All.Time;
for(n = 1, min = P[0].Ti_endstep; n < NumPart; n++)
if(min > P[n].Ti_endstep)
min = P[n].Ti_endstep;
MPI_Allreduce(&min, &min_glob, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD);
/* We check whether this is a full step where all particles are synchronized */
flag = 1;
for(n = 0; n < NumPart; n++)
if(P[n].Ti_endstep > min_glob)
flag = 0;
MPI_Allreduce(&flag, &Flag_FullStep, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD);
#ifdef PMGRID
if(min_glob >= All.PM_Ti_endstep)
{
min_glob = All.PM_Ti_endstep;
Flag_FullStep = 1;
}
#endif
/* Determine 'NumForceUpdate', i.e. the number of particles on this processor that are going to be active */
for(n = 0, NumForceUpdate = 0; n < NumPart; n++)
{
if(P[n].Ti_endstep == min_glob)
#ifdef SELECTIVE_NO_GRAVITY
if(!((1 << P[n].Type) & (SELECTIVE_NO_GRAVITY)))
#endif
NumForceUpdate++;
}
/* note: NumForcesSinceLastDomainDecomp has type "long long" */
temp = malloc(NTask * sizeof(int));
MPI_Allgather(&NumForceUpdate, 1, MPI_INT, temp, 1, MPI_INT, MPI_COMM_WORLD);
for(n = 0; n < NTask; n++)
All.NumForcesSinceLastDomainDecomp += temp[n];
free(temp);
t1 = second();
All.CPU_Predict += timediff(t0, t1);
while(min_glob >= All.Ti_nextoutput && All.Ti_nextoutput >= 0)
{
move_particles(All.Ti_Current, All.Ti_nextoutput);
All.Ti_Current = All.Ti_nextoutput;
if(All.ComovingIntegrationOn)
All.Time = All.TimeBegin * exp(All.Ti_Current * All.Timebase_interval);
else
All.Time = All.TimeBegin + All.Ti_Current * All.Timebase_interval;
#ifdef OUTPUTPOTENTIAL
All.NumForcesSinceLastDomainDecomp = 1 + All.TotNumPart * All.TreeDomainUpdateFrequency;
domain_Decomposition();
compute_potential();
#endif
savepositions(All.SnapshotFileCount++); /* write snapshot file */
All.Ti_nextoutput = find_next_outputtime(All.Ti_nextoutput + 1);
}
move_particles(All.Ti_Current, min_glob);
All.Ti_Current = min_glob;
if(All.ComovingIntegrationOn)
All.Time = All.TimeBegin * exp(All.Ti_Current * All.Timebase_interval);
else
All.Time = All.TimeBegin + All.Ti_Current * All.Timebase_interval;
All.TimeStep = All.Time - timeold;
}
/*! this function returns the next output time that is equal or larger to
* ti_curr
*/
int find_next_outputtime(int ti_curr)
{
int i, ti, ti_next, iter = 0;
double next, time;
ti_next = -1;
if(All.OutputListOn)
{
for(i = 0; i < All.OutputListLength; i++)
{
time = All.OutputListTimes[i];
if(time >= All.TimeBegin && time <= All.TimeMax)
{
if(All.ComovingIntegrationOn)
ti = log(time / All.TimeBegin) / All.Timebase_interval;
else
ti = (time - All.TimeBegin) / All.Timebase_interval;
if(ti >= ti_curr)
{
if(ti_next == -1)
ti_next = ti;
if(ti_next > ti)
ti_next = ti;
}
}
}
}
else
{
if(All.ComovingIntegrationOn)
{
if(All.TimeBetSnapshot <= 1.0)
{
printf("TimeBetSnapshot > 1.0 required for your simulation.\n");
endrun(13123);
}
}
else
{
if(All.TimeBetSnapshot <= 0.0)
{
printf("TimeBetSnapshot > 0.0 required for your simulation.\n");
endrun(13123);
}
}
time = All.TimeOfFirstSnapshot;
iter = 0;
while(time < All.TimeBegin)
{
if(All.ComovingIntegrationOn)
time *= All.TimeBetSnapshot;
else
time += All.TimeBetSnapshot;
iter++;
if(iter > 1000000)
{
printf("Can't determine next output time.\n");
endrun(110);
}
}
while(time <= All.TimeMax)
{
if(All.ComovingIntegrationOn)
ti = log(time / All.TimeBegin) / All.Timebase_interval;
else
ti = (time - All.TimeBegin) / All.Timebase_interval;
if(ti >= ti_curr)
{
ti_next = ti;
break;
}
if(All.ComovingIntegrationOn)
time *= All.TimeBetSnapshot;
else
time += All.TimeBetSnapshot;
iter++;
if(iter > 1000000)
{
printf("Can't determine next output time.\n");
endrun(111);
}
}
}
if(ti_next == -1)
{
ti_next = 2 * TIMEBASE; /* this will prevent any further output */
if(ThisTask == 0)
printf("\nThere is no valid time for a further snapshot file.\n");
}
else
{
if(All.ComovingIntegrationOn)
next = All.TimeBegin * exp(ti_next * All.Timebase_interval);
else
next = All.TimeBegin + ti_next * All.Timebase_interval;
if(ThisTask == 0)
printf("\nSetting next time for snapshot file to Time_next= %g\n\n", next);
}
return ti_next;
}
/*! This routine writes one line for every timestep to two log-files. In
* FdInfo, we just list the timesteps that have been done, while in FdCPU the
* cumulative cpu-time consumption in various parts of the code is stored.
*/
void every_timestep_stuff(void)
{
double z;
if(ThisTask == 0)
{
if(All.ComovingIntegrationOn)
{
z = 1.0 / (All.Time) - 1;
fprintf(FdInfo, "\nBegin Step %d, Time: %g, Redshift: %g, Systemstep: %g, Dloga: %g\n",
All.NumCurrentTiStep, All.Time, z, All.TimeStep,
log(All.Time) - log(All.Time - All.TimeStep));
printf("\nBegin Step %d, Time: %g, Redshift: %g, Systemstep: %g, Dloga: %g\n", All.NumCurrentTiStep,
All.Time, z, All.TimeStep, log(All.Time) - log(All.Time - All.TimeStep));
fflush(FdInfo);
}
else
{
fprintf(FdInfo, "\nBegin Step %d, Time: %g, Systemstep: %g\n", All.NumCurrentTiStep, All.Time,
All.TimeStep);
printf("\nBegin Step %d, Time: %g, Systemstep: %g\n", All.NumCurrentTiStep, All.Time, All.TimeStep);
fflush(FdInfo);
}
fprintf(FdCPU, "Step %d, Time: %g, CPUs: %d\n", All.NumCurrentTiStep, All.Time, NTask);
fprintf(FdCPU,
"%10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f\n",
All.CPU_Total, All.CPU_Gravity, All.CPU_Hydro, All.CPU_Domain, All.CPU_Potential,
All.CPU_Predict, All.CPU_TimeLine, All.CPU_Snapshot, All.CPU_TreeWalk, All.CPU_TreeConstruction,
All.CPU_CommSum, All.CPU_Imbalance, All.CPU_HydCompWalk, All.CPU_HydCommSumm,
All.CPU_HydImbalance, All.CPU_EnsureNgb, All.CPU_PM, All.CPU_Peano);
fflush(FdCPU);
}
set_random_numbers();
}
/*! This routine first calls a computation of various global quantities of the
* particle distribution, and then writes some statistics about the energies
* in the various particle components to the file FdEnergy.
*/
void energy_statistics(void)
{
compute_global_quantities_of_system();
if(ThisTask == 0)
{
fprintf(FdEnergy,
"%g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g\n",
All.Time, SysState.EnergyInt, SysState.EnergyPot, SysState.EnergyKin, SysState.EnergyIntComp[0],
SysState.EnergyPotComp[0], SysState.EnergyKinComp[0], SysState.EnergyIntComp[1],
SysState.EnergyPotComp[1], SysState.EnergyKinComp[1], SysState.EnergyIntComp[2],
SysState.EnergyPotComp[2], SysState.EnergyKinComp[2], SysState.EnergyIntComp[3],
SysState.EnergyPotComp[3], SysState.EnergyKinComp[3], SysState.EnergyIntComp[4],
SysState.EnergyPotComp[4], SysState.EnergyKinComp[4], SysState.EnergyIntComp[5],
SysState.EnergyPotComp[5], SysState.EnergyKinComp[5], SysState.MassComp[0],
SysState.MassComp[1], SysState.MassComp[2], SysState.MassComp[3], SysState.MassComp[4],
SysState.MassComp[5]);
fflush(FdEnergy);
}
}