forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ggml_extend.hpp
1255 lines (1100 loc) · 44.8 KB
/
ggml_extend.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef __GGML_EXTEND_HPP__
#define __GGML_EXTEND_HPP__
#include <assert.h>
#include <inttypes.h>
#include <stdarg.h>
#include <algorithm>
#include <cstring>
#include <fstream>
#include <functional>
#include <iostream>
#include <iterator>
#include <map>
#include <memory>
#include <random>
#include <regex>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include "ggml/ggml-alloc.h"
#include "ggml/ggml-backend.h"
#include "ggml/ggml.h"
#ifdef SD_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#ifdef SD_USE_METAL
#include "ggml-metal.h"
#endif
#include "rng.hpp"
#include "util.h"
#define EPS 1e-05f
#ifndef __STATIC_INLINE__
#define __STATIC_INLINE__ static inline
#endif
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) {
(void)level;
(void)user_data;
fputs(text, stderr);
fflush(stderr);
}
__STATIC_INLINE__ void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr<RNG> rng) {
uint32_t n = (uint32_t)ggml_nelements(tensor);
std::vector<float> random_numbers = rng->randn(n);
for (uint32_t i = 0; i < n; i++) {
ggml_set_f32_1d(tensor, i, random_numbers[i]);
}
}
// set tensor[i, j, k, l]
// set tensor[l]
// set tensor[k, l]
// set tensor[j, k, l]
__STATIC_INLINE__ void ggml_tensor_set_f32(struct ggml_tensor* tensor, float value, int l, int k = 0, int j = 0, int i = 0) {
GGML_ASSERT(tensor->nb[0] == sizeof(float));
*(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]) = value;
}
__STATIC_INLINE__ float ggml_tensor_get_f32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
if (tensor->buffer != NULL) {
float value;
ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(float));
return value;
}
GGML_ASSERT(tensor->nb[0] == sizeof(float));
return *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
}
__STATIC_INLINE__ ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
}
__STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_only = false) {
printf("shape(%zu, %zu, %zu, %zu)\n", tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
fflush(stdout);
if (shape_only) {
return;
}
int range = 3;
for (int i = 0; i < tensor->ne[3]; i++) {
if (i >= range && i + range < tensor->ne[3]) {
continue;
}
for (int j = 0; j < tensor->ne[2]; j++) {
if (j >= range && j + range < tensor->ne[2]) {
continue;
}
for (int k = 0; k < tensor->ne[1]; k++) {
if (k >= range && k + range < tensor->ne[1]) {
continue;
}
for (int l = 0; l < tensor->ne[0]; l++) {
if (l >= range && l + range < tensor->ne[0]) {
continue;
}
if (tensor->type == GGML_TYPE_F32) {
printf(" [%d, %d, %d, %d] = %f\n", i, j, k, l, ggml_tensor_get_f32(tensor, l, k, j, i));
} else if (tensor->type == GGML_TYPE_F16) {
printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_f16(tensor, l, k, j, i));
}
fflush(stdout);
}
}
}
}
}
__STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) {
std::ifstream file(file_path, std::ios::binary);
if (!file.is_open()) {
LOG_ERROR("failed to open '%s'", file_path.c_str());
return NULL;
}
int32_t n_dims;
int32_t length;
int32_t ttype;
file.read(reinterpret_cast<char*>(&n_dims), sizeof(n_dims));
file.read(reinterpret_cast<char*>(&length), sizeof(length));
file.read(reinterpret_cast<char*>(&ttype), sizeof(ttype));
if (file.eof()) {
LOG_ERROR("incomplete file '%s'", file_path.c_str());
return NULL;
}
int32_t nelements = 1;
int32_t ne[4] = {1, 1, 1, 1};
for (int i = 0; i < n_dims; ++i) {
file.read(reinterpret_cast<char*>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
file.read(&name[0], length);
ggml_tensor* tensor = ggml_new_tensor_4d(ctx, (ggml_type)ttype, ne[0], ne[1], ne[2], ne[3]);
const size_t bpe = ggml_type_size(ggml_type(ttype));
file.read(reinterpret_cast<char*>(tensor->data), ggml_nbytes(tensor));
return tensor;
}
// __STATIC_INLINE__ void save_tensor_to_file(const std::string& file_name, ggml_tensor* tensor, const std::string & name) {
// std::string file_name_ = file_name + ".tensor";
// std::string name_ = name;
// std::ofstream file("./" + file_name_, std::ios::binary);
// file.write(reinterpret_cast<char*>(&tensor->n_dims), sizeof(tensor->n_dims));
// int len = (int)name_.size();
// file.write(reinterpret_cast<char*>(&len), sizeof(len));
// int ttype = (int)tensor->type;
// file.write(reinterpret_cast<char*>(&ttype), sizeof(ttype));
// for (int i = 0; i < tensor->n_dims; ++i) {
// int ne_ = (int) tensor->ne[i];
// file.write(reinterpret_cast<char*>(&ne_), sizeof(ne_));
// }
// file.write(&name_[0], len);
// char* data = nullptr;
// file.write((char*)tensor->data, ggml_nbytes(tensor));
// file.close();
// }
__STATIC_INLINE__ void copy_ggml_tensor(struct ggml_tensor* dst, struct ggml_tensor* src) {
if (dst->type == src->type) {
dst->nb[0] = src->nb[0];
dst->nb[1] = src->nb[1];
dst->nb[2] = src->nb[2];
dst->nb[3] = src->nb[3];
memcpy(((char*)dst->data), ((char*)src->data), ggml_nbytes(dst));
return;
}
struct ggml_init_params params;
params.mem_size = 10 * 1024 * 1024; // for padding
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* ctx = ggml_init(params);
if (!ctx) {
LOG_ERROR("ggml_init() failed");
return;
}
ggml_tensor* final = ggml_cpy(ctx, src, dst);
struct ggml_cgraph* graph = ggml_new_graph(ctx);
ggml_build_forward_expand(graph, final);
ggml_graph_compute_with_ctx(ctx, graph, 1);
ggml_free(ctx);
}
__STATIC_INLINE__ float sigmoid(float x) {
return 1 / (1.0f + expf(-x));
}
// SPECIAL OPERATIONS WITH TENSORS
__STATIC_INLINE__ uint8_t* sd_tensor_to_image(struct ggml_tensor* input) {
int64_t width = input->ne[0];
int64_t height = input->ne[1];
int64_t channels = input->ne[2];
GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32);
uint8_t* image_data = (uint8_t*)malloc(width * height * channels);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float value = ggml_tensor_get_f32(input, ix, iy, k);
*(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f);
}
}
}
return image_data;
}
__STATIC_INLINE__ void sd_image_to_tensor(const uint8_t* image_data,
struct ggml_tensor* output,
bool scale = true) {
int64_t width = output->ne[0];
int64_t height = output->ne[1];
int64_t channels = output->ne[2];
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float value = *(image_data + iy * width * channels + ix * channels + k);
if (scale) {
value /= 255.f;
}
ggml_tensor_set_f32(output, value, ix, iy, k);
}
}
}
}
__STATIC_INLINE__ void sd_image_f32_to_tensor(const float* image_data,
struct ggml_tensor* output,
bool scale = true) {
int64_t width = output->ne[0];
int64_t height = output->ne[1];
int64_t channels = output->ne[2];
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float value = *(image_data + iy * width * channels + ix * channels + k);
if (scale) {
value /= 255.f;
}
ggml_tensor_set_f32(output, value, ix, iy, k);
}
}
}
}
__STATIC_INLINE__ void ggml_split_tensor_2d(struct ggml_tensor* input,
struct ggml_tensor* output,
int x,
int y) {
int64_t width = output->ne[0];
int64_t height = output->ne[1];
int64_t channels = output->ne[2];
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float value = ggml_tensor_get_f32(input, ix + x, iy + y, k);
ggml_tensor_set_f32(output, value, ix, iy, k);
}
}
}
}
__STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
struct ggml_tensor* output,
int x,
int y,
int overlap) {
int64_t width = input->ne[0];
int64_t height = input->ne[1];
int64_t channels = input->ne[2];
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float new_value = ggml_tensor_get_f32(input, ix, iy, k);
if (overlap > 0) { // blend colors in overlapped area
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k);
if (x > 0 && ix < overlap) { // in overlapped horizontal
ggml_tensor_set_f32(output, old_value + (new_value - old_value) * (ix / (1.0f * overlap)), x + ix, y + iy, k);
continue;
}
if (y > 0 && iy < overlap) { // in overlapped vertical
ggml_tensor_set_f32(output, old_value + (new_value - old_value) * (iy / (1.0f * overlap)), x + ix, y + iy, k);
continue;
}
}
ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k);
}
}
}
}
__STATIC_INLINE__ float ggml_tensor_mean(struct ggml_tensor* src) {
float mean = 0.0f;
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
mean += data[i] / nelements * 1.0f;
}
return mean;
}
// a = a+b
__STATIC_INLINE__ void ggml_tensor_add(struct ggml_tensor* a, struct ggml_tensor* b) {
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
int64_t nelements = ggml_nelements(a);
float* vec_a = (float*)a->data;
float* vec_b = (float*)b->data;
for (int i = 0; i < nelements; i++) {
vec_a[i] = vec_a[i] + vec_b[i];
}
}
__STATIC_INLINE__ void ggml_tensor_scale(struct ggml_tensor* src, float scale) {
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
data[i] = data[i] * scale;
}
}
__STATIC_INLINE__ void ggml_tensor_clamp(struct ggml_tensor* src, float min, float max) {
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
float val = data[i];
data[i] = val < min ? min : (val > max ? max : val);
}
}
// convert values from [0, 1] to [-1, 1]
__STATIC_INLINE__ void ggml_tensor_scale_input(struct ggml_tensor* src) {
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
float val = data[i];
data[i] = val * 2.0f - 1.0f;
}
}
// convert values from [-1, 1] to [0, 1]
__STATIC_INLINE__ void ggml_tensor_scale_output(struct ggml_tensor* src) {
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
float val = data[i];
data[i] = (val + 1.0f) * 0.5f;
}
}
typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process;
// Tiling
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) {
int input_width = (int)input->ne[0];
int input_height = (int)input->ne[1];
int output_width = (int)output->ne[0];
int output_height = (int)output->ne[1];
GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2
int tile_overlap = (int32_t)(tile_size * tile_overlap_factor);
int non_tile_overlap = tile_size - tile_overlap;
struct ggml_init_params params = {};
params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk
params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk
params.mem_size += 3 * ggml_tensor_overhead();
params.mem_buffer = NULL;
params.no_alloc = false;
LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
// draft context
struct ggml_context* tiles_ctx = ggml_init(params);
if (!tiles_ctx) {
LOG_ERROR("ggml_init() failed");
return;
}
// tiling
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1);
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1);
on_processing(input_tile, NULL, true);
int num_tiles = (input_width * input_height) / (non_tile_overlap * non_tile_overlap);
LOG_INFO("processing %i tiles", num_tiles);
pretty_progress(1, num_tiles, 0.0f);
int tile_count = 1;
bool last_y = false, last_x = false;
float last_time = 0.0f;
for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) {
if (y + tile_size >= input_height) {
y = input_height - tile_size;
last_y = true;
}
for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) {
if (x + tile_size >= input_width) {
x = input_width - tile_size;
last_x = true;
}
int64_t t1 = ggml_time_ms();
ggml_split_tensor_2d(input, input_tile, x, y);
on_processing(input_tile, output_tile, false);
ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale);
int64_t t2 = ggml_time_ms();
last_time = (t2 - t1) / 1000.0f;
pretty_progress(tile_count, num_tiles, last_time);
tile_count++;
}
last_x = false;
}
if (tile_count < num_tiles) {
pretty_progress(num_tiles, num_tiles, last_time);
}
}
__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx,
struct ggml_tensor* a) {
return ggml_group_norm(ctx, a, 32);
}
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b) {
x = ggml_mul_mat(ctx, w, x);
if (b != NULL) {
x = ggml_add(ctx, x, b);
}
return x;
}
// w: [OC,IC, KH, KW]
// x: [N, IC, IH, IW]
// b: [OC,]
// result: [N, OC, OH, OW]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b,
int s0 = 1,
int s1 = 1,
int p0 = 0,
int p1 = 0,
int d0 = 1,
int d1 = 1) {
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
if (b != NULL) {
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
// b = ggml_repeat(ctx, b, x);
x = ggml_add(ctx, x, b);
}
return x;
}
// w: [OC,IC, KD, 1 * 1]
// x: [N, IC, IH, IW]
// b: [OC,]
// result: [N, OC, OH, OW]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1_bak(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b,
int s2 = 1,
int p2 = 1,
int d2 = 1) {
GGML_ASSERT(w->ne[0] == 1);
// timesteps = x.shape[0]
// x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
// x = conv3d(x)
// return rearrange(x, "b c t h w -> (b t) c h w")
int64_t T = x->ne[3];
int64_t B = x->ne[3] / T;
int64_t C = x->ne[2];
int64_t H = x->ne[1];
int64_t W = x->ne[0];
x = ggml_reshape_4d(ctx, x, W * H, C, T, B); // (b t) c h w -> b t c (h w)
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // b t c (h w) -> b c t (h w)
x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2); // [B, OC, T, OH * OW]
if (b != NULL) {
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
x = ggml_add(ctx, x, b);
}
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // b c t (h w) -> b t c (h w)
x = ggml_reshape_4d(ctx, x, W, H, C, T * B); // b t c (h w) -> (b t) c h w
return x; // [B*T, OC, OH, OW]
}
// w: [OC,IC, KD, 1 * 1]
// x: [N, IC, ID, IH*IW]
// b: [OC,]
// result: [N, OC, OD, OH*OW]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b,
int s2 = 1,
int p2 = 1,
int d2 = 1) {
x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2); // [N, OC, T, OH * OW]
if (b != NULL) {
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
x = ggml_add(ctx, x, b);
}
return x; // [N, OC, T, OH * OW]
}
// q: [N * n_head, n_token, d_head]
// k: [N * n_head, n_k, d_head]
// v: [N * n_head, d_head, n_k]
// return: [N * n_head, n_token, d_head]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention(struct ggml_context* ctx,
struct ggml_tensor* q,
struct ggml_tensor* k,
struct ggml_tensor* v,
bool mask = false) {
#if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUBLAS) && !defined(SD_USE_METAL)
struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, n_token, d_head]
#else
float d_head = (float)q->ne[0];
struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, n_token, n_k]
kq = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head));
if (mask) {
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
}
kq = ggml_soft_max_inplace(ctx, kq);
struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, n_token, d_head]
#endif
return kqv;
}
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_layer_norm(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b,
float eps = EPS) {
x = ggml_norm(ctx, x, eps);
if (w != NULL) {
x = ggml_mul(ctx, x, w);
if (b != NULL) {
x = ggml_add(ctx, x, b);
}
}
return x;
}
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_group_norm(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b,
int num_groups = 32) {
if (ggml_n_dims(x) >= 3 && w != NULL && b != NULL) {
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1);
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
}
x = ggml_group_norm(ctx, x, num_groups);
if (w != NULL && b != NULL) {
x = ggml_mul(ctx, x, w);
// b = ggml_repeat(ctx, b, x);
x = ggml_add(ctx, x, b);
}
return x;
}
__STATIC_INLINE__ void ggml_backend_tensor_get_and_sync(ggml_backend_t backend, const struct ggml_tensor* tensor, void* data, size_t offset, size_t size) {
#ifdef SD_USE_CUBLAS
if (!ggml_backend_is_cpu(backend)) {
ggml_backend_tensor_get_async(backend, tensor, data, offset, size);
ggml_backend_synchronize(backend);
} else {
ggml_backend_tensor_get(tensor, data, offset, size);
}
#else
ggml_backend_tensor_get(tensor, data, offset, size);
#endif
}
__STATIC_INLINE__ float ggml_backend_tensor_get_f32(ggml_tensor* tensor) {
GGML_ASSERT(tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_F16);
float value;
if (tensor->type == GGML_TYPE_F32) {
ggml_backend_tensor_get(tensor, &value, 0, sizeof(value));
} else { // GGML_TYPE_F16
ggml_fp16_t f16_value;
ggml_backend_tensor_get(tensor, &f16_value, 0, sizeof(f16_value));
value = ggml_fp16_to_fp32(f16_value);
}
return value;
}
__STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor(struct ggml_context* ctx,
const std::vector<float>& vec) {
struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, vec.size());
memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t));
return t;
}
__STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor_i32(struct ggml_context* ctx,
const std::vector<int>& vec) {
struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vec.size());
memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t));
return t;
}
__STATIC_INLINE__ std::vector<float> arange(float start, float end, float step = 1.f) {
std::vector<float> result;
for (float value = start; value < end; value += step) {
result.push_back(value);
}
return result;
}
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
__STATIC_INLINE__ std::vector<float> timestep_embedding(std::vector<float> timesteps,
int dim,
int max_period = 10000) {
// timesteps: [N,]
// embedding: [N, dim]
size_t N = timesteps.size();
int acutual_dim = dim;
if (dim % 2 != 0) {
acutual_dim = dim + 1;
}
std::vector<float> embedding(N * acutual_dim, 0.f);
int half = dim / 2;
std::vector<float> freqs(half);
for (int i = 0; i < half; ++i) {
freqs[i] = (float)std::exp(-std::log(max_period) * i / half);
}
for (int i = 0; i < N; ++i) {
for (int j = 0; j < half; ++j) {
float arg = timesteps[i] * freqs[j];
embedding[i * acutual_dim + j] = std::cos(arg);
embedding[i * acutual_dim + j + half] = std::sin(arg);
}
}
return embedding;
}
__STATIC_INLINE__ void set_timestep_embedding(std::vector<float> timesteps,
struct ggml_tensor* embedding,
int dim,
int max_period = 10000) {
std::vector<float> embedding_vec = timestep_embedding(timesteps, dim, max_period);
memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding));
}
__STATIC_INLINE__ struct ggml_tensor* new_timestep_embedding(struct ggml_context* ctx,
std::vector<float> timesteps,
int dim,
int max_period = 10000) {
// timesteps: [N,]
// embedding: [N, dim]
std::vector<float> embedding_vec = timestep_embedding(timesteps, dim, max_period);
int acutual_dim = dim;
if (dim % 2 != 0) {
acutual_dim = dim + 1;
}
struct ggml_tensor* embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, acutual_dim, timesteps.size());
if (embedding->data != NULL) {
memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding));
} else {
ggml_backend_tensor_set(embedding, embedding_vec.data(), 0, ggml_nbytes(embedding));
}
return embedding;
}
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_timestep_embedding(
struct ggml_context* ctx,
struct ggml_tensor* timesteps,
int dim,
int max_period = 10000) {
return ggml_timestep_embedding(ctx, timesteps, dim, max_period);
}
// struct GGMLComputeGraph {
// virtual void init(struct ggml_context* ctx, ggml_type wtype) = 0;
// virtual std::string get_desc() = 0;
// virtual size_t get_params_mem_size() = 0;
// virtual size_t get_params_num() = 0;
// virtual struct ggml_cgraph* get_ggml_cgraph() = 0;
// };
#define MAX_PARAMS_TENSOR_NUM 10240
#define MAX_GRAPH_SIZE 10240
struct GGMLModule {
protected:
typedef std::function<struct ggml_cgraph*()> get_graph_cb_t;
struct ggml_context* params_ctx = NULL;
ggml_backend_buffer_t params_buffer = NULL;
struct ggml_context* compute_ctx = NULL;
struct ggml_gallocr* compute_allocr = NULL;
std::map<struct ggml_tensor*, const void*> backend_tensor_data_map;
ggml_type wtype = GGML_TYPE_F32;
ggml_backend_t backend = NULL;
void alloc_params_ctx() {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(MAX_PARAMS_TENSOR_NUM * ggml_tensor_overhead());
params.mem_buffer = NULL;
params.no_alloc = true;
params_ctx = ggml_init(params);
GGML_ASSERT(params_ctx != NULL);
}
void free_params_ctx() {
if (params_ctx != NULL) {
ggml_free(params_ctx);
params_ctx = NULL;
}
}
void alloc_compute_ctx() {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(ggml_tensor_overhead() * MAX_GRAPH_SIZE + ggml_graph_overhead());
params.mem_buffer = NULL;
params.no_alloc = true;
compute_ctx = ggml_init(params);
GGML_ASSERT(compute_ctx != NULL);
}
void free_compute_ctx() {
if (compute_ctx != NULL) {
ggml_free(compute_ctx);
compute_ctx = NULL;
}
}
bool alloc_compute_buffer(get_graph_cb_t get_graph) {
if (compute_allocr != NULL) {
return true;
}
reset_compute_ctx();
struct ggml_cgraph* gf = get_graph();
backend_tensor_data_map.clear();
compute_allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
if (!ggml_gallocr_reserve(compute_allocr, gf)) {
// failed to allocate the compute buffer
LOG_ERROR("%s: failed to allocate the compute buffer\n", get_desc().c_str());
free_compute_buffer();
return false;
}
// compute the required memory
size_t compute_buffer_size = ggml_gallocr_get_buffer_size(compute_allocr, 0);
LOG_DEBUG("%s compute buffer size: %.2f MB", get_desc().c_str(), compute_buffer_size / 1024.0 / 1024.0);
return true;
}
void cpy_data_to_backend_tensor() {
for (auto& kv : backend_tensor_data_map) {
auto tensor = kv.first;
auto data = kv.second;
ggml_backend_tensor_set(tensor, data, 0, ggml_nbytes(tensor));
}
backend_tensor_data_map.clear();
}
public:
virtual size_t get_params_mem_size() = 0;
virtual size_t get_params_num() = 0;
virtual std::string get_desc() = 0;
GGMLModule(ggml_backend_t backend, ggml_type wtype = GGML_TYPE_F32)
: backend(backend), wtype(wtype) {
alloc_params_ctx();
}
virtual ~GGMLModule() {
free_params_buffer();
free_compute_buffer();
free_params_ctx();
free_compute_ctx();
}
void reset_compute_ctx() {
free_compute_ctx();
alloc_compute_ctx();
}
bool alloc_params_buffer() {
size_t num_tensors = get_params_num();
params_buffer = ggml_backend_alloc_ctx_tensors(params_ctx, backend);
if (params_buffer == NULL) {
LOG_ERROR("%s alloc params backend buffer failed", get_desc().c_str());
return false;
}
size_t params_buffer_size = ggml_backend_buffer_get_size(params_buffer);
LOG_DEBUG("%s params backend buffer size = % 6.2f MB (%i tensors)",
get_desc().c_str(), params_buffer_size / (1024.0 * 1024.0), num_tensors);
return true;
}
void free_params_buffer() {
if (params_buffer != NULL) {
ggml_backend_buffer_free(params_buffer);
params_buffer = NULL;
}
}
void free_compute_buffer() {
if (compute_allocr != NULL) {
ggml_gallocr_free(compute_allocr);
compute_allocr = NULL;
}
}
// do copy after alloc graph
void set_backend_tensor_data(struct ggml_tensor* tensor, const void* data) {
backend_tensor_data_map[tensor] = data;
}
struct ggml_tensor* to_backend(struct ggml_tensor* tensor) {
GGML_ASSERT(compute_ctx != NULL);
if (tensor == NULL) {
return NULL;
}
// it's performing a compute, check if backend isn't cpu
if (!ggml_backend_is_cpu(backend) && tensor->backend == GGML_BACKEND_TYPE_CPU) {
// pass input tensors to gpu memory
auto backend_tensor = ggml_dup_tensor(compute_ctx, tensor);
set_backend_tensor_data(backend_tensor, tensor->data);
return backend_tensor;
} else {
return tensor;
}
}
void compute(get_graph_cb_t get_graph,
int n_threads,
bool free_compute_buffer_immediately = true,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL) {
alloc_compute_buffer(get_graph);
reset_compute_ctx();
struct ggml_cgraph* gf = get_graph();
GGML_ASSERT(ggml_gallocr_alloc_graph(compute_allocr, gf));
cpy_data_to_backend_tensor();
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, n_threads);
}
#ifdef SD_USE_METAL
if (ggml_backend_is_metal(backend)) {
ggml_backend_metal_set_n_cb(backend, n_threads);
}
#endif
ggml_backend_graph_compute(backend, gf);
#ifdef GGML_PERF
ggml_graph_print(gf);
#endif
if (output != NULL) {
auto result = gf->nodes[gf->n_nodes - 1];
if (*output == NULL && output_ctx != NULL) {
*output = ggml_dup_tensor(output_ctx, result);
}
if (*output != NULL) {
ggml_backend_tensor_get_and_sync(backend, result, (*output)->data, 0, ggml_nbytes(*output));
}
}
if (free_compute_buffer_immediately) {
free_compute_buffer();
}
}
};
class GGMLBlock {
private:
static char temp_buffer[1024 * 1024 * 10];
ggml_context* get_temp_ctx() {
struct ggml_init_params params;
params.mem_size = sizeof(temp_buffer);
params.mem_buffer = temp_buffer;
params.no_alloc = true;
ggml_context* temp_ctx = ggml_init(params);
GGML_ASSERT(temp_ctx != NULL);
return temp_ctx;
}
protected:
typedef std::unordered_map<std::string, struct ggml_tensor*> ParameterMap;
typedef std::unordered_map<std::string, std::shared_ptr<GGMLBlock>> GGMLBlockMap;
GGMLBlockMap blocks;
ParameterMap params;
void init_blocks(struct ggml_context* ctx, ggml_type wtype) {
for (auto& pair : blocks) {
auto& block = pair.second;
block->init(ctx, wtype);
}
}
virtual void init_params(struct ggml_context* ctx, ggml_type wtype) {}
public:
void init(struct ggml_context* ctx, ggml_type wtype) {
init_blocks(ctx, wtype);
init_params(ctx, wtype);
}
std::tuple<size_t, size_t> get_params_info(ggml_type wtype) {
ggml_context* temp_ctx = get_temp_ctx();
init(temp_ctx, wtype);
size_t num_tensors = get_params_num();
size_t mem_size = get_params_mem_size();
return {num_tensors, mem_size};
}
size_t get_params_num() {
size_t num_tensors = params.size();
for (auto& pair : blocks) {
auto& block = pair.second;
num_tensors += block->get_params_num();
}
return num_tensors;
};
size_t get_params_mem_size() {
size_t mem_size = 0;
for (auto& pair : blocks) {
auto& block = pair.second;
mem_size += block->get_params_mem_size();
}
for (auto& pair : params) {
mem_size += ggml_nbytes(pair.second);
}
return mem_size;
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, std::string prefix = "") {
if (prefix.size() > 0) {
prefix = prefix + ".";
}
for (auto& pair : blocks) {
auto& block = pair.second;
block->get_param_tensors(tensors, prefix + pair.first);
}
for (auto& pair : params) {
struct ggml_tensor* param = pair.second;
tensors[prefix + pair.first] = pair.second;
}
}
};
class UnaryBlock : public GGMLBlock {
public:
virtual struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) = 0;
};
class Linear : public UnaryBlock {
protected:
int64_t in_features;
int64_t out_features;