forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
control.hpp
466 lines (389 loc) · 19.8 KB
/
control.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#ifndef __CONTROL_HPP__
#define __CONTROL_HPP__
#include "common.hpp"
#include "ggml_extend.hpp"
#include "model.h"
#define CONTROL_NET_GRAPH_SIZE 1536
/*
=================================== ControlNet ===================================
Reference: https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/cldm/cldm.py
*/
class ControlNetBlock : public GGMLBlock {
protected:
SDVersion version = VERSION_1_x;
// network hparams
int in_channels = 4;
int out_channels = 4;
int hint_channels = 3;
int num_res_blocks = 2;
std::vector<int> attention_resolutions = {4, 2, 1};
std::vector<int> channel_mult = {1, 2, 4, 4};
std::vector<int> transformer_depth = {1, 1, 1, 1};
int time_embed_dim = 1280; // model_channels*4
int num_heads = 8;
int num_head_channels = -1; // channels // num_heads
int context_dim = 768; // 1024 for VERSION_2_x, 2048 for VERSION_XL
public:
int model_channels = 320;
int adm_in_channels = 2816; // only for VERSION_XL
ControlNetBlock(SDVersion version = VERSION_1_x)
: version(version) {
if (version == VERSION_2_x) {
context_dim = 1024;
num_head_channels = 64;
num_heads = -1;
} else if (version == VERSION_XL) {
context_dim = 2048;
attention_resolutions = {4, 2};
channel_mult = {1, 2, 4};
transformer_depth = {1, 2, 10};
num_head_channels = 64;
num_heads = -1;
} else if (version == VERSION_SVD) {
in_channels = 8;
out_channels = 4;
context_dim = 1024;
adm_in_channels = 768;
num_head_channels = 64;
num_heads = -1;
}
blocks["time_embed.0"] = std::shared_ptr<GGMLBlock>(new Linear(model_channels, time_embed_dim));
// time_embed_1 is nn.SiLU()
blocks["time_embed.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
if (version == VERSION_XL || version == VERSION_SVD) {
blocks["label_emb.0.0"] = std::shared_ptr<GGMLBlock>(new Linear(adm_in_channels, time_embed_dim));
// label_emb_1 is nn.SiLU()
blocks["label_emb.0.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
}
// input_blocks
blocks["input_blocks.0.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, model_channels, {3, 3}, {1, 1}, {1, 1}));
std::vector<int> input_block_chans;
input_block_chans.push_back(model_channels);
int ch = model_channels;
int input_block_idx = 0;
int ds = 1;
auto get_resblock = [&](int64_t channels, int64_t emb_channels, int64_t out_channels) -> ResBlock* {
return new ResBlock(channels, emb_channels, out_channels);
};
auto get_attention_layer = [&](int64_t in_channels,
int64_t n_head,
int64_t d_head,
int64_t depth,
int64_t context_dim) -> SpatialTransformer* {
return new SpatialTransformer(in_channels, n_head, d_head, depth, context_dim);
};
auto make_zero_conv = [&](int64_t channels) {
return new Conv2d(channels, channels, {1, 1});
};
blocks["zero_convs.0.0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(model_channels));
blocks["input_hint_block.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(hint_channels, 16, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(16, 16, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.4"] = std::shared_ptr<GGMLBlock>(new Conv2d(16, 32, {3, 3}, {2, 2}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.6"] = std::shared_ptr<GGMLBlock>(new Conv2d(32, 32, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.8"] = std::shared_ptr<GGMLBlock>(new Conv2d(32, 96, {3, 3}, {2, 2}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.10"] = std::shared_ptr<GGMLBlock>(new Conv2d(96, 96, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.12"] = std::shared_ptr<GGMLBlock>(new Conv2d(96, 256, {3, 3}, {2, 2}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.14"] = std::shared_ptr<GGMLBlock>(new Conv2d(256, model_channels, {3, 3}, {1, 1}, {1, 1}));
size_t len_mults = channel_mult.size();
for (int i = 0; i < len_mults; i++) {
int mult = channel_mult[i];
for (int j = 0; j < num_res_blocks; j++) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, mult * model_channels));
ch = mult * model_channels;
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
int n_head = num_heads;
int d_head = ch / num_heads;
if (num_head_channels != -1) {
d_head = num_head_channels;
n_head = ch / d_head;
}
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
blocks[name] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[i],
context_dim));
}
blocks["zero_convs." + std::to_string(input_block_idx) + ".0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(ch));
input_block_chans.push_back(ch);
}
if (i != len_mults - 1) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(new DownSampleBlock(ch, ch));
blocks["zero_convs." + std::to_string(input_block_idx) + ".0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(ch));
input_block_chans.push_back(ch);
ds *= 2;
}
}
// middle blocks
int n_head = num_heads;
int d_head = ch / num_heads;
if (num_head_channels != -1) {
d_head = num_head_channels;
n_head = ch / d_head;
}
blocks["middle_block.0"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
blocks["middle_block.1"] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[transformer_depth.size() - 1],
context_dim));
blocks["middle_block.2"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
// middle_block_out
blocks["middle_block_out.0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(ch));
}
struct ggml_tensor* resblock_forward(std::string name,
struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* emb) {
auto block = std::dynamic_pointer_cast<ResBlock>(blocks[name]);
return block->forward(ctx, x, emb);
}
struct ggml_tensor* attention_layer_forward(std::string name,
struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* context) {
auto block = std::dynamic_pointer_cast<SpatialTransformer>(blocks[name]);
return block->forward(ctx, x, context);
}
struct ggml_tensor* input_hint_block_forward(struct ggml_context* ctx,
struct ggml_tensor* hint,
struct ggml_tensor* emb,
struct ggml_tensor* context) {
int num_input_blocks = 15;
auto h = hint;
for (int i = 0; i < num_input_blocks; i++) {
if (i % 2 == 0) {
auto block = std::dynamic_pointer_cast<Conv2d>(blocks["input_hint_block." + std::to_string(i)]);
h = block->forward(ctx, h);
} else {
h = ggml_silu_inplace(ctx, h);
}
}
return h;
}
std::vector<struct ggml_tensor*> forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* guided_hint,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y = NULL) {
// x: [N, in_channels, h, w] or [N, in_channels/2, h, w]
// timesteps: [N,]
// context: [N, max_position, hidden_size] or [1, max_position, hidden_size]. for example, [N, 77, 768]
// y: [N, adm_in_channels] or [1, adm_in_channels]
if (context != NULL) {
if (context->ne[2] != x->ne[3]) {
context = ggml_repeat(ctx, context, ggml_new_tensor_3d(ctx, GGML_TYPE_F32, context->ne[0], context->ne[1], x->ne[3]));
}
}
if (y != NULL) {
if (y->ne[1] != x->ne[3]) {
y = ggml_repeat(ctx, y, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, y->ne[0], x->ne[3]));
}
}
auto time_embed_0 = std::dynamic_pointer_cast<Linear>(blocks["time_embed.0"]);
auto time_embed_2 = std::dynamic_pointer_cast<Linear>(blocks["time_embed.2"]);
auto input_blocks_0_0 = std::dynamic_pointer_cast<Conv2d>(blocks["input_blocks.0.0"]);
auto zero_convs_0 = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs.0.0"]);
auto middle_block_out = std::dynamic_pointer_cast<Conv2d>(blocks["middle_block_out.0"]);
auto t_emb = ggml_nn_timestep_embedding(ctx, timesteps, model_channels); // [N, model_channels]
auto emb = time_embed_0->forward(ctx, t_emb);
emb = ggml_silu_inplace(ctx, emb);
emb = time_embed_2->forward(ctx, emb); // [N, time_embed_dim]
// SDXL/SVD
if (y != NULL) {
auto label_embed_0 = std::dynamic_pointer_cast<Linear>(blocks["label_emb.0.0"]);
auto label_embed_2 = std::dynamic_pointer_cast<Linear>(blocks["label_emb.0.2"]);
auto label_emb = label_embed_0->forward(ctx, y);
label_emb = ggml_silu_inplace(ctx, label_emb);
label_emb = label_embed_2->forward(ctx, label_emb); // [N, time_embed_dim]
emb = ggml_add(ctx, emb, label_emb); // [N, time_embed_dim]
}
std::vector<struct ggml_tensor*> outs;
if (guided_hint == NULL) {
guided_hint = input_hint_block_forward(ctx, hint, emb, context);
}
outs.push_back(guided_hint);
// input_blocks
// input block 0
auto h = input_blocks_0_0->forward(ctx, x);
h = ggml_add(ctx, h, guided_hint);
outs.push_back(zero_convs_0->forward(ctx, h));
// input block 1-11
size_t len_mults = channel_mult.size();
int input_block_idx = 0;
int ds = 1;
for (int i = 0; i < len_mults; i++) {
int mult = channel_mult[i];
for (int j = 0; j < num_res_blocks; j++) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
h = resblock_forward(name, ctx, h, emb); // [N, mult*model_channels, h, w]
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
h = attention_layer_forward(name, ctx, h, context); // [N, mult*model_channels, h, w]
}
auto zero_conv = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs." + std::to_string(input_block_idx) + ".0"]);
outs.push_back(zero_conv->forward(ctx, h));
}
if (i != len_mults - 1) {
ds *= 2;
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
auto block = std::dynamic_pointer_cast<DownSampleBlock>(blocks[name]);
h = block->forward(ctx, h); // [N, mult*model_channels, h/(2^(i+1)), w/(2^(i+1))]
auto zero_conv = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs." + std::to_string(input_block_idx) + ".0"]);
outs.push_back(zero_conv->forward(ctx, h));
}
}
// [N, 4*model_channels, h/8, w/8]
// middle_block
h = resblock_forward("middle_block.0", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
h = attention_layer_forward("middle_block.1", ctx, h, context); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
// out
outs.push_back(middle_block_out->forward(ctx, h));
return outs;
}
};
struct ControlNet : public GGMLModule {
SDVersion version = VERSION_1_x;
ControlNetBlock control_net;
ggml_backend_buffer_t control_buffer = NULL; // keep control output tensors in backend memory
ggml_context* control_ctx = NULL;
std::vector<struct ggml_tensor*> controls; // (12 input block outputs, 1 middle block output) SD 1.5
struct ggml_tensor* guided_hint = NULL; // guided_hint cache, for faster inference
bool guided_hint_cached = false;
ControlNet(ggml_backend_t backend,
ggml_type wtype,
SDVersion version = VERSION_1_x)
: GGMLModule(backend, wtype), control_net(version) {
control_net.init(params_ctx, wtype);
}
~ControlNet() {
free_control_ctx();
}
void alloc_control_ctx(std::vector<struct ggml_tensor*> outs) {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(outs.size() * ggml_tensor_overhead()) + 1024 * 1024;
params.mem_buffer = NULL;
params.no_alloc = true;
control_ctx = ggml_init(params);
controls.resize(outs.size() - 1);
size_t control_buffer_size = 0;
guided_hint = ggml_dup_tensor(control_ctx, outs[0]);
control_buffer_size += ggml_nbytes(guided_hint);
for (int i = 0; i < outs.size() - 1; i++) {
controls[i] = ggml_dup_tensor(control_ctx, outs[i + 1]);
control_buffer_size += ggml_nbytes(controls[i]);
}
control_buffer = ggml_backend_alloc_ctx_tensors(control_ctx, backend);
LOG_DEBUG("control buffer size %.2fMB", control_buffer_size * 1.f / 1024.f / 1024.f);
}
void free_control_ctx() {
if (control_buffer != NULL) {
ggml_backend_buffer_free(control_buffer);
control_buffer = NULL;
}
if (control_ctx != NULL) {
ggml_free(control_ctx);
control_ctx = NULL;
}
guided_hint = NULL;
guided_hint_cached = false;
controls.clear();
}
std::string get_desc() {
return "control_net";
}
size_t get_params_mem_size() {
return control_net.get_params_mem_size();
}
size_t get_params_num() {
return control_net.get_params_num();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
control_net.get_param_tensors(tensors, prefix);
}
struct ggml_cgraph* build_graph(struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y = NULL) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, CONTROL_NET_GRAPH_SIZE, false);
x = to_backend(x);
if (guided_hint_cached) {
hint = NULL;
} else {
hint = to_backend(hint);
}
context = to_backend(context);
y = to_backend(y);
timesteps = to_backend(timesteps);
auto outs = control_net.forward(compute_ctx,
x,
hint,
guided_hint_cached ? guided_hint : NULL,
timesteps,
context,
y);
if (control_ctx == NULL) {
alloc_control_ctx(outs);
}
ggml_build_forward_expand(gf, ggml_cpy(compute_ctx, outs[0], guided_hint));
for (int i = 0; i < outs.size() - 1; i++) {
ggml_build_forward_expand(gf, ggml_cpy(compute_ctx, outs[i + 1], controls[i]));
}
return gf;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL) {
// x: [N, in_channels, h, w]
// timesteps: [N, ]
// context: [N, max_position, hidden_size]([N, 77, 768]) or [1, max_position, hidden_size]
// y: [N, adm_in_channels] or [1, adm_in_channels]
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x, hint, timesteps, context, y);
};
GGMLModule::compute(get_graph, n_threads, false, output, output_ctx);
guided_hint_cached = true;
}
bool load_from_file(const std::string& file_path) {
LOG_INFO("loading control net from '%s'", file_path.c_str());
alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;
control_net.get_param_tensors(tensors);
std::set<std::string> ignore_tensors;
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path)) {
LOG_ERROR("init control net model loader from file failed: '%s'", file_path.c_str());
return false;
}
bool success = model_loader.load_tensors(tensors, backend, ignore_tensors);
if (!success) {
LOG_ERROR("load control net tensors from model loader failed");
return false;
}
LOG_INFO("control net model loaded");
return success;
}
};
#endif // __CONTROL_HPP__