-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrat_data_generator.py
executable file
·73 lines (55 loc) · 2.51 KB
/
strat_data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# definition of the data generator used for training
# loosely inspired by: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
# our contributions:
# - yielding metadata for stratification purposes
# - performing img->numpy step
import numpy as np
from tensorflow import keras
import PIL
import PIL.Image
import os
class DataGenerator(keras.utils.Sequence):
def __init__(self, list_imgs, labels, strat_classes_num, data_path, batch_size=32, dim=(450, 600, 3), n_classes=7, shuffle=True):
self.dim = dim
self.batch_size = batch_size
self.labels = labels
self.list_imgs = list_imgs
self.strat_classes_num = strat_classes_num
self.data_path = data_path
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
# returns number of batches per epoch
def __len__(self):
return int(np.floor(len(self.list_imgs) / self.batch_size))
# generate one batch of data
def __getitem__(self, index):
# generates indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# takes list of image IDs
list_imgs_temp = [self.list_imgs[k] for k in indexes]
# generates data for given IDs
X, y = self.__data_generation(list_imgs_temp)
return X, y
# updates indexes after each epoch. thanks to shuffling the training loop doesnt see the same batches in each epoch
def on_epoch_end(self):
self.indexes = np.arange(len(self.list_imgs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
# generates data containing batch_size samples
def __data_generation(self, list_imgs_temp):
# sets up empty arrays in proper shapes
X = np.empty((self.batch_size, *self.dim))
meta_X = np.empty((self.batch_size, self.strat_classes_num))
y = np.empty((self.batch_size), dtype=int)
# generates data, according to what was earlier returned by draw_data()
for i, img in enumerate(list_imgs_temp):
X[i, ] = self.__get_img_to_numpy(img[0])
meta_X[i, ] = [img[1] == el for el in range(self.strat_classes_num)]
y[i] = self.labels[img[0]]
X = X / 255.0
return [X, meta_X], keras.utils.to_categorical(y, num_classes=self.n_classes)
# takes one image, spits out 450x600x3 numpy
def __get_img_to_numpy(self, img):
pic = PIL.Image.open(os.path.join(self.data_path, f'{img}.jpg'))
return np.array(pic)