forked from rapidsai/cudf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwm_benchmark.py
158 lines (149 loc) · 5.87 KB
/
wm_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# wm benchmark
import cudf
import glob
import argparse
parser = argparse.ArgumentParser()
directory = "/home/coder/cudf/generated_data/WM_MOCKED_2/"
parser.add_argument('-p', '--data_path', default=directory, help='Path to sample parquet data files with string json columns', type=str)
parser.add_argument('-n', '--num_columns', default=-1, help='Enter the number of columns to limit to (upto 57)', type=int)
args = parser.parse_args()
directory = args.data_path
print("Reading parquet files from ", directory)
df = cudf.read_parquet([filename for filename in glob.iglob(f'{directory}/*.parquet')][:8])
STRING = cudf.dtype(str)
dtype = {
"JEBEDJPKEFHPHGLLGPM": STRING,
"FLMEPG": {"CGEGPD":STRING},
"JACICCCIMMHJHKPDED": {
"OGGC":{"CGEGPD":[{"MDGA":STRING} ]}
},
"AGHF": {
"DPKEAPDACLPHGPEMH":STRING,
"ONNILHPABGIKKFJOEK":STRING,
"FFFPOENCNBBNOOMOJGDBNIPD":STRING
},
"AENBHHGIABBBDDGOEI": {
"PIGOFCPIPPBNNB":{"CGEGPD":[{"GMFDD":STRING}]},
"CCBJKBHGPBJCKFPCBHGLOAFE":{"CGEGPD":[{"GMFDD":STRING}]},
"LMPCGHBIJGCIPDPNELPBCOP":{"CGEGPD":[{"GMFDD":STRING}]},
"PKBGI":{"CGEGPD":[{"GMFDD":STRING}]},
"ILPIJKBLDB":{"CGEGPD":[{"GMFDD":STRING}]},
"GHBBEOAC":{"CGEGPD":[{"GMFDD":STRING}]},
"EKGPKGCJPMI":{"CGEGPD":[{"GMFDD":STRING}]},
"BDEGLFGMCPKOCNDGJMFPANNBPK":{"CGEGPD":[{"GMFDD":STRING}]},
"LILJMMPPO":{"CGEGPD":[{"GMFDD":STRING}]},
"EAGCHCMLMOLGJK":{
"BEACAHEBBO":{
"BNLFCI":STRING,
"GPIHMJ":STRING
},
"CGEGPD":[{
"GJFKCFJELPJEDBAD":STRING,
"GMFDD":STRING
}]
},
"PMJPCGCHAALKBPKHDM":{"CGEGPD":[{"GMFDD":STRING}]},
"OCFGAF":{"CGEGPD":[{"GMFDD":STRING}]},
"GMJICFMBNPLBEOLMGDN":{"CGEGPD":[{"GMFDD":STRING}]},
"CBMI":{"CGEGPD":[{"GMFDD":STRING}]},
"NPAGLLFCHAI":{"CGEGPD":[{"GMFDD":STRING}]},
"LFKAJEPMJPLGLICEEMAHFEJGPLGIAKPIOPPP":{"CGEGPD":[{"GMFDD":STRING}]},
"HGNHKIOEGKIJJJPEC":{"CGEGPD":[{"GMFDD":STRING}]},
"JAGGKPKOICKOBABAJPNHF":{"CGEGPD":[{"GMFDD":STRING}]},
"PLEJAKDBBGLCDLGDIBHPPBHB":{"CGEGPD":[{"GMFDD":STRING}]},
"MMNHNPKGLLBJMAOGOCBEOIOKIM":{"CGEGPD":[{"GMFDD":STRING}]},
"JLKDBLFFFPPCNANBKMELJKFOPKPNC":{"CGEGPD":[{"GMFDD":STRING}]},
"OCJGMOAJJKBKNCHOJKBJG":{"CGEGPD":[{"GMFDD":STRING}]},
"PMOAGIJAFOGGLINIOEBFGHBN":{"CGEGPD":[{"GMFDD":STRING}]},
"JPDILOFKPCNBKDB":{"CGEGPD":[{"GMFDD":STRING}]},
"CPBFNDGC":{"CGEGPD":[{"GMFDD":STRING}]},
"KPOPPCFLFCNAPIJEDJDGGFBOPLDCMLLGOMO":{"CGEGPD":[{"GMFDD":STRING}]},
"LBDGCNJNOGMJPNHMLLBMA":{"CGEGPD":[{"GMFDD":STRING}]},
"EIHBDLNJDOAHPMCNGGLLEF":{"CGEGPD":[{"GMFDD":STRING}]},
"GIPPDMMAFOBAALMHMGJBM":{"CGEGPD":[{"GMFDD":STRING}]},
"FKBODHACMMGHL":{"CGEGPD":[{
"KMEJHDA":STRING,
"CJKIKCGA":STRING
}]},
"HFFDKEDMFBAKEHHM":{"CGEGPD":[{"GMFDD":STRING}]},
"KGJLLAPHJNKCEOIAMCAABCJP":{"CGEGPD":[{"GMFDD":STRING}]},
"KLJNBPLECGCA":{"CGEGPD":[{"GMFDD":STRING}]},
"NBJNFKKKCHEGCABDGKG":{
"BEACAHEBBO":{
"BNLFCI":STRING,
"GPIHMJ":STRING
},
"CGEGPD":[{
"GJFKCFJELPJEDBAD":STRING,
"GMFDD":STRING
}]
},
"AOHKGCPAOGANLKEJDLMIGDD":{"BEACAHEBBO":{
"BNLFCI":STRING,
"GPIHMJ":STRING
}},
"IKHLECMHMONKLKIBD":{"CGEGPD":[{"GMFDD":STRING}]},
"PNJPGEHPDLMPBDMFPLKABFFGG":{"CGEGPD":[{"GMFDD":STRING}]},
"IGAJPHHGOENI":{"CGEGPD":[{"GMFDD":STRING}]},
"LDPMFNAGLJGDMFOLAKH":{"CGEGPD":[{
"KMEJHDA":STRING,
"CJKIKCGA":STRING
}]},
"BFAJJIOLJBEOMFKLE":{"CGEGPD":[{"GMFDD":STRING}]},
"DOONHL":{"CGEGPD":[{"GMFDD":STRING}]}
},
"OCIKAF": STRING
}
def limit_columns(x, num_leaf1):
num_leaf = num_leaf1
def filter_nested(x):
nonlocal num_leaf
if num_leaf == 0:
return None
if isinstance(x, list):
if num_leaf == 0:
return None
v = filter_nested(x[0])
return [v]
elif isinstance(x, dict):
dupe_node = {}
for k, v in x.items():
if num_leaf == 0:
return dupe_node;
dupe_node[k] = filter_nested(v)
return dupe_node
else:
num_leaf -= 1
return x
if num_leaf<=0:
return dtype
return filter_nested(x)
def replace_recursive(x):
if isinstance(x, dict):
return cudf.StructDtype({k: replace_recursive(v) for k, v in x.items()})
elif isinstance(x, list):
length = len(x)
if length != 1:
raise ValueError("List length must be 1")
return cudf.ListDtype(replace_recursive(x[0]))
else:
return x
print("Limiting to", args.num_columns, "columns")
dtype = limit_columns(dtype, args.num_columns)
dtype = replace_recursive(dtype)
dtype = dtype.fields;
if df["columnC"].str.contains("\n").any()==True:
#error
print("Error: newline in columnC")
exit(1)
json_data = df["columnC"].str.cat(sep="\n", na_rep="{}")
#1.9812268866226077 GB
from io import StringIO
import time
import nvtx
print("Reading JSON data")
with nvtx.annotate("from_json", color="purple"):
start_time = time.time()
df2 = cudf.read_json(StringIO(json_data), dtype=dtype, lines=True, prune_columns=True, on_bad_lines='recover')
print("--- %s seconds ---" % (time.time() - start_time))
print("Throughput: ", len(json_data)/(1024*1024*1024)/(time.time() - start_time), "GB/s")