-
Notifications
You must be signed in to change notification settings - Fork 183
/
Copy pathrecurrent.js
528 lines (471 loc) · 15.5 KB
/
recurrent.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
var R = {}; // the Recurrent library
(function(global) {
"use strict";
// Utility fun
function assert(condition, message) {
// from http://stackoverflow.com/questions/15313418/javascript-assert
if (!condition) {
message = message || "Assertion failed";
if (typeof Error !== "undefined") {
throw new Error(message);
}
throw message; // Fallback
}
}
// Random numbers utils
var return_v = false;
var v_val = 0.0;
var gaussRandom = function() {
if(return_v) {
return_v = false;
return v_val;
}
var u = 2*Math.random()-1;
var v = 2*Math.random()-1;
var r = u*u + v*v;
if(r == 0 || r > 1) return gaussRandom();
var c = Math.sqrt(-2*Math.log(r)/r);
v_val = v*c; // cache this
return_v = true;
return u*c;
}
var randf = function(a, b) { return Math.random()*(b-a)+a; }
var randi = function(a, b) { return Math.floor(Math.random()*(b-a)+a); }
var randn = function(mu, std){ return mu+gaussRandom()*std; }
// helper function returns array of zeros of length n
// and uses typed arrays if available
var zeros = function(n) {
if(typeof(n)==='undefined' || isNaN(n)) { return []; }
if(typeof ArrayBuffer === 'undefined') {
// lacking browser support
var arr = new Array(n);
for(var i=0;i<n;i++) { arr[i] = 0; }
return arr;
} else {
return new Float64Array(n);
}
}
// Mat holds a matrix
var Mat = function(n,d) {
// n is number of rows d is number of columns
this.n = n;
this.d = d;
this.w = zeros(n * d);
this.dw = zeros(n * d);
}
Mat.prototype = {
get: function(row, col) {
// slow but careful accessor function
// we want row-major order
var ix = (this.d * row) + col;
assert(ix >= 0 && ix < this.w.length);
return this.w[ix];
},
set: function(row, col, v) {
// slow but careful accessor function
var ix = (this.d * row) + col;
assert(ix >= 0 && ix < this.w.length);
this.w[ix] = v;
},
toJSON: function() {
var json = {};
json['n'] = this.n;
json['d'] = this.d;
json['w'] = this.w;
return json;
},
fromJSON: function(json) {
this.n = json.n;
this.d = json.d;
this.w = zeros(this.n * this.d);
this.dw = zeros(this.n * this.d);
for(var i=0,n=this.n * this.d;i<n;i++) {
this.w[i] = json.w[i]; // copy over weights
}
}
}
// return Mat but filled with random numbers from gaussian
var RandMat = function(n,d,mu,std) {
var m = new Mat(n, d);
//fillRandn(m,mu,std);
fillRand(m,-std,std); // kind of :P
return m;
}
// Mat utils
// fill matrix with random gaussian numbers
var fillRandn = function(m, mu, std) { for(var i=0,n=m.w.length;i<n;i++) { m.w[i] = randn(mu, std); } }
var fillRand = function(m, lo, hi) { for(var i=0,n=m.w.length;i<n;i++) { m.w[i] = randf(lo, hi); } }
// Transformer definitions
var Graph = function(needs_backprop) {
if(typeof needs_backprop === 'undefined') { needs_backprop = true; }
this.needs_backprop = needs_backprop;
// this will store a list of functions that perform backprop,
// in their forward pass order. So in backprop we will go
// backwards and evoke each one
this.backprop = [];
}
Graph.prototype = {
backward: function() {
for(var i=this.backprop.length-1;i>=0;i--) {
this.backprop[i](); // tick!
}
},
rowPluck: function(m, ix) {
// pluck a row of m with index ix and return it as col vector
assert(ix >= 0 && ix < m.n);
var d = m.d;
var out = new Mat(d, 1);
for(var i=0,n=d;i<n;i++){ out.w[i] = m.w[d * ix + i]; } // copy over the data
if(this.needs_backprop) {
var backward = function() {
for(var i=0,n=d;i<n;i++){ m.dw[d * ix + i] += out.dw[i]; }
}
this.backprop.push(backward);
}
return out;
},
tanh: function(m) {
// tanh nonlinearity
var out = new Mat(m.n, m.d);
var n = m.w.length;
for(var i=0;i<n;i++) {
out.w[i] = Math.tanh(m.w[i]);
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0;i<n;i++) {
// grad for z = tanh(x) is (1 - z^2)
var mwi = out.w[i];
m.dw[i] += (1.0 - mwi * mwi) * out.dw[i];
}
}
this.backprop.push(backward);
}
return out;
},
sigmoid: function(m) {
// sigmoid nonlinearity
var out = new Mat(m.n, m.d);
var n = m.w.length;
for(var i=0;i<n;i++) {
out.w[i] = sig(m.w[i]);
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0;i<n;i++) {
// grad for z = tanh(x) is (1 - z^2)
var mwi = out.w[i];
m.dw[i] += mwi * (1.0 - mwi) * out.dw[i];
}
}
this.backprop.push(backward);
}
return out;
},
relu: function(m) {
var out = new Mat(m.n, m.d);
var n = m.w.length;
for(var i=0;i<n;i++) {
out.w[i] = Math.max(0, m.w[i]); // relu
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0;i<n;i++) {
m.dw[i] += m.w[i] > 0 ? out.dw[i] : 0.0;
}
}
this.backprop.push(backward);
}
return out;
},
mul: function(m1, m2) {
// multiply matrices m1 * m2
assert(m1.d === m2.n, 'matmul dimensions misaligned');
var n = m1.n;
var d = m2.d;
var out = new Mat(n,d);
for(var i=0;i<m1.n;i++) { // loop over rows of m1
for(var j=0;j<m2.d;j++) { // loop over cols of m2
var dot = 0.0;
for(var k=0;k<m1.d;k++) { // dot product loop
dot += m1.w[m1.d*i+k] * m2.w[m2.d*k+j];
}
out.w[d*i+j] = dot;
}
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0;i<m1.n;i++) { // loop over rows of m1
for(var j=0;j<m2.d;j++) { // loop over cols of m2
for(var k=0;k<m1.d;k++) { // dot product loop
var b = out.dw[d*i+j];
m1.dw[m1.d*i+k] += m2.w[m2.d*k+j] * b;
m2.dw[m2.d*k+j] += m1.w[m1.d*i+k] * b;
}
}
}
}
this.backprop.push(backward);
}
return out;
},
add: function(m1, m2) {
assert(m1.w.length === m2.w.length);
var out = new Mat(m1.n, m1.d);
for(var i=0,n=m1.w.length;i<n;i++) {
out.w[i] = m1.w[i] + m2.w[i];
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0,n=m1.w.length;i<n;i++) {
m1.dw[i] += out.dw[i];
m2.dw[i] += out.dw[i];
}
}
this.backprop.push(backward);
}
return out;
},
eltmul: function(m1, m2) {
assert(m1.w.length === m2.w.length);
var out = new Mat(m1.n, m1.d);
for(var i=0,n=m1.w.length;i<n;i++) {
out.w[i] = m1.w[i] * m2.w[i];
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0,n=m1.w.length;i<n;i++) {
m1.dw[i] += m2.w[i] * out.dw[i];
m2.dw[i] += m1.w[i] * out.dw[i];
}
}
this.backprop.push(backward);
}
return out;
},
}
var softmax = function(m) {
var out = new Mat(m.n, m.d); // probability volume
var maxval = -999999;
for(var i=0,n=m.w.length;i<n;i++) { if(m.w[i] > maxval) maxval = m.w[i]; }
var s = 0.0;
for(var i=0,n=m.w.length;i<n;i++) {
out.w[i] = Math.exp(m.w[i] - maxval);
s += out.w[i];
}
for(var i=0,n=m.w.length;i<n;i++) { out.w[i] /= s; }
// no backward pass here needed
// since we will use the computed probabilities outside
// to set gradients directly on m
return out;
}
var Solver = function() {
this.decay_rate = 0.999;
this.smooth_eps = 1e-8;
this.step_cache = {};
}
Solver.prototype = {
step: function(model, step_size, regc, clipval) {
// perform parameter update
var solver_stats = {};
var num_clipped = 0;
var num_tot = 0;
for(var k in model) {
if(model.hasOwnProperty(k)) {
var m = model[k]; // mat ref
if(!(k in this.step_cache)) { this.step_cache[k] = new Mat(m.n, m.d); }
var s = this.step_cache[k];
for(var i=0,n=m.w.length;i<n;i++) {
// rmsprop adaptive learning rate
var mdwi = m.dw[i];
s.w[i] = s.w[i] * this.decay_rate + (1.0 - this.decay_rate) * mdwi * mdwi;
// gradient clip
if(mdwi > clipval) {
mdwi = clipval;
num_clipped++;
}
if(mdwi < -clipval) {
mdwi = -clipval;
num_clipped++;
}
num_tot++;
// update (and regularize)
m.w[i] += - step_size * mdwi / Math.sqrt(s.w[i] + this.smooth_eps) - regc * m.w[i];
m.dw[i] = 0; // reset gradients for next iteration
}
}
}
solver_stats['ratio_clipped'] = num_clipped*1.0/num_tot;
return solver_stats;
}
}
var initLSTM = function(input_size, hidden_sizes, output_size) {
// hidden size should be a list
var model = {};
for(var d=0;d<hidden_sizes.length;d++) { // loop over depths
var prev_size = d === 0 ? input_size : hidden_sizes[d - 1];
var hidden_size = hidden_sizes[d];
// gates parameters
model['Wix'+d] = new RandMat(hidden_size, prev_size , 0, 0.08);
model['Wih'+d] = new RandMat(hidden_size, hidden_size , 0, 0.08);
model['bi'+d] = new Mat(hidden_size, 1);
model['Wfx'+d] = new RandMat(hidden_size, prev_size , 0, 0.08);
model['Wfh'+d] = new RandMat(hidden_size, hidden_size , 0, 0.08);
model['bf'+d] = new Mat(hidden_size, 1);
model['Wox'+d] = new RandMat(hidden_size, prev_size , 0, 0.08);
model['Woh'+d] = new RandMat(hidden_size, hidden_size , 0, 0.08);
model['bo'+d] = new Mat(hidden_size, 1);
// cell write params
model['Wcx'+d] = new RandMat(hidden_size, prev_size , 0, 0.08);
model['Wch'+d] = new RandMat(hidden_size, hidden_size , 0, 0.08);
model['bc'+d] = new Mat(hidden_size, 1);
}
// decoder params
model['Whd'] = new RandMat(output_size, hidden_size, 0, 0.08);
model['bd'] = new Mat(output_size, 1);
return model;
}
var forwardLSTM = function(G, model, hidden_sizes, x, prev) {
// forward prop for a single tick of LSTM
// G is graph to append ops to
// model contains LSTM parameters
// x is 1D column vector with observation
// prev is a struct containing hidden and cell
// from previous iteration
if(typeof prev.h === 'undefined') {
var hidden_prevs = [];
var cell_prevs = [];
for(var d=0;d<hidden_sizes.length;d++) {
hidden_prevs.push(new R.Mat(hidden_sizes[d],1));
cell_prevs.push(new R.Mat(hidden_sizes[d],1));
}
} else {
var hidden_prevs = prev.h;
var cell_prevs = prev.c;
}
var hidden = [];
var cell = [];
for(var d=0;d<hidden_sizes.length;d++) {
var input_vector = d === 0 ? x : hidden[d-1];
var hidden_prev = hidden_prevs[d];
var cell_prev = cell_prevs[d];
// input gate
var h0 = G.mul(model['Wix'+d], input_vector);
var h1 = G.mul(model['Wih'+d], hidden_prev);
var input_gate = G.sigmoid(G.add(G.add(h0,h1),model['bi'+d]));
// forget gate
var h2 = G.mul(model['Wfx'+d], input_vector);
var h3 = G.mul(model['Wfh'+d], hidden_prev);
var forget_gate = G.sigmoid(G.add(G.add(h2, h3),model['bf'+d]));
// output gate
var h4 = G.mul(model['Wox'+d], input_vector);
var h5 = G.mul(model['Woh'+d], hidden_prev);
var output_gate = G.sigmoid(G.add(G.add(h4, h5),model['bo'+d]));
// write operation on cells
var h6 = G.mul(model['Wcx'+d], input_vector);
var h7 = G.mul(model['Wch'+d], hidden_prev);
var cell_write = G.tanh(G.add(G.add(h6, h7),model['bc'+d]));
// compute new cell activation
var retain_cell = G.eltmul(forget_gate, cell_prev); // what do we keep from cell
var write_cell = G.eltmul(input_gate, cell_write); // what do we write to cell
var cell_d = G.add(retain_cell, write_cell); // new cell contents
// compute hidden state as gated, saturated cell activations
var hidden_d = G.eltmul(output_gate, G.tanh(cell_d));
hidden.push(hidden_d);
cell.push(cell_d);
}
// one decoder to outputs at end
var output = G.add(G.mul(model['Whd'], hidden[hidden.length - 1]),model['bd']);
// return cell memory, hidden representation and output
return {'h':hidden, 'c':cell, 'o' : output};
}
var initRNN = function(input_size, hidden_sizes, output_size) {
// hidden size should be a list
var model = {};
for(var d=0;d<hidden_sizes.length;d++) { // loop over depths
var prev_size = d === 0 ? input_size : hidden_sizes[d - 1];
var hidden_size = hidden_sizes[d];
model['Wxh'+d] = new R.RandMat(hidden_size, prev_size , 0, 0.08);
model['Whh'+d] = new R.RandMat(hidden_size, hidden_size, 0, 0.08);
model['bhh'+d] = new R.Mat(hidden_size, 1);
}
// decoder params
model['Whd'] = new RandMat(output_size, hidden_size, 0, 0.08);
model['bd'] = new Mat(output_size, 1);
return model;
}
var forwardRNN = function(G, model, hidden_sizes, x, prev) {
// forward prop for a single tick of RNN
// G is graph to append ops to
// model contains RNN parameters
// x is 1D column vector with observation
// prev is a struct containing hidden activations from last step
if(typeof prev.h === 'undefined') {
var hidden_prevs = [];
for(var d=0;d<hidden_sizes.length;d++) {
hidden_prevs.push(new R.Mat(hidden_sizes[d],1));
}
} else {
var hidden_prevs = prev.h;
}
var hidden = [];
for(var d=0;d<hidden_sizes.length;d++) {
var input_vector = d === 0 ? x : hidden[d-1];
var hidden_prev = hidden_prevs[d];
var h0 = G.mul(model['Wxh'+d], input_vector);
var h1 = G.mul(model['Whh'+d], hidden_prev);
var hidden_d = G.relu(G.add(G.add(h0, h1), model['bhh'+d]));
hidden.push(hidden_d);
}
// one decoder to outputs at end
var output = G.add(G.mul(model['Whd'], hidden[hidden.length - 1]),model['bd']);
// return cell memory, hidden representation and output
return {'h':hidden, 'o' : output};
}
var sig = function(x) {
// helper function for computing sigmoid
return 1.0/(1+Math.exp(-x));
}
var maxi = function(w) {
// argmax of array w
var maxv = w[0];
var maxix = 0;
for(var i=1,n=w.length;i<n;i++) {
var v = w[i];
if(v > maxv) {
maxix = i;
maxv = v;
}
}
return maxix;
}
var samplei = function(w) {
// sample argmax from w, assuming w are
// probabilities that sum to one
var r = randf(0,1);
var x = 0.0;
var i = 0;
while(true) {
x += w[i];
if(x > r) { return i; }
i++;
}
return w.length - 1; // pretty sure we should never get here?
}
// various utils
global.maxi = maxi;
global.samplei = samplei;
global.randi = randi;
global.softmax = softmax;
global.assert = assert;
// classes
global.Mat = Mat;
global.RandMat = RandMat;
global.forwardLSTM = forwardLSTM;
global.initLSTM = initLSTM;
global.forwardRNN = forwardRNN;
global.initRNN = initRNN;
// optimization
global.Solver = Solver;
global.Graph = Graph;
})(R);