-
Notifications
You must be signed in to change notification settings - Fork 700
/
makemore.py
719 lines (603 loc) · 29 KB
/
makemore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
"""
you give this script some words (one per line) and it will generate more things like it.
uses super state of the art Transformer AI tech
this code is intended to be super hackable. tune it to your needs.
Changes from minGPT:
- I removed the from_pretrained function where we init with GPT2 weights
- I removed dropout layers because the models we train here are small,
it's not necessary to understand at this stage and at this scale.
- I removed weight decay and all of the complexity around what parameters are
and are not weight decayed. I don't believe this should make a massive
difference at the scale that we operate on here.
"""
import os
import sys
import time
import math
import argparse
from dataclasses import dataclass
from typing import List
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import Dataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
# -----------------------------------------------------------------------------
@dataclass
class ModelConfig:
block_size: int = None # length of the input sequences of integers
vocab_size: int = None # the input integers are in range [0 .. vocab_size -1]
# parameters below control the sizes of each model slightly differently
n_layer: int = 4
n_embd: int = 64
n_embd2: int = 64
n_head: int = 4
# -----------------------------------------------------------------------------
# Transformer Language Model (*exactly* as used in GPT-2)
class NewGELU(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT).
Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
"""
def forward(self, x):
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
class CausalSelfAttention(nn.Module):
"""
A vanilla multi-head masked self-attention layer with a projection at the end.
It is possible to use torch.nn.MultiheadAttention here but I am including an
explicit implementation here to show that there is nothing too scary here.
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
self.n_head = config.n_head
self.n_embd = config.n_embd
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class Block(nn.Module):
""" an unassuming Transformer block """
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = nn.ModuleDict(dict(
c_fc = nn.Linear(config.n_embd, 4 * config.n_embd),
c_proj = nn.Linear(4 * config.n_embd, config.n_embd),
act = NewGELU(),
))
m = self.mlp
self.mlpf = lambda x: m.c_proj(m.act(m.c_fc(x))) # MLP forward
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlpf(self.ln_2(x))
return x
class Transformer(nn.Module):
""" Transformer Language Model, exactly as seen in GPT-2 """
def __init__(self, config):
super().__init__()
self.block_size = config.block_size
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# report number of parameters (note we don't count the decoder parameters in lm_head)
n_params = sum(p.numel() for p in self.transformer.parameters())
print("number of parameters: %.2fM" % (n_params/1e6,))
def get_block_size(self):
return self.block_size
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.block_size, f"Cannot forward sequence of length {t}, block size is only {self.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
# -----------------------------------------------------------------------------
# Bag of Words (BoW) language model
class CausalBoW(nn.Module):
"""
Causal bag of words. Averages the preceding elements and looks suspiciously like
a CausalAttention module you'd find in a transformer, for no apparent reason at all ;)
"""
def __init__(self, config):
super().__init__()
# used to mask out vectors and preserve autoregressive property
self.block_size = config.block_size
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, n_embd
# do the weighted average of all preceeding token features
att = torch.zeros((B, T, T), device=x.device)
att = att.masked_fill(self.bias[:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = att @ x # (B, T, T) x (B, T, C) -> (B, T, C)
return y
class BoWBlock(nn.Module):
""" collects BoW features and adds an MLP """
def __init__(self, config):
super().__init__()
# Causal BoW module
self.cbow = CausalBoW(config)
# MLP assembler
self.mlp = nn.ModuleDict(dict(
c_fc = nn.Linear(config.n_embd, config.n_embd2),
c_proj = nn.Linear(config.n_embd2, config.n_embd),
))
m = self.mlp
self.mlpf = lambda x: m.c_proj(F.tanh(m.c_fc(x))) # MLP forward
def forward(self, x):
x = x + self.cbow(x)
x = x + self.mlpf(x)
return x
class BoW(nn.Module):
"""
takes the previous block_size tokens, encodes them with a lookup table,
also encodes their positions with lookup table, then averages all of those
embeddings up and uses that to predict the next token.
"""
def __init__(self, config):
super().__init__()
self.block_size = config.block_size
self.vocab_size = config.vocab_size
# token embedding
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
# position embedding
self.wpe = nn.Embedding(config.block_size, config.n_embd)
# context block
self.context_block = BoWBlock(config)
# language model head decoder layer
self.lm_head = nn.Linear(config.n_embd, self.vocab_size)
def get_block_size(self):
return self.block_size
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.block_size, f"Cannot forward sequence of length {t}, block size is only {self.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
# forward the token and position embedding layers
tok_emb = self.wte(idx) # token embeddings of shape (b, t, n_embd)
pos_emb = self.wpe(pos) # position embeddings of shape (1, t, n_embd)
# add and run through the decoder MLP
x = tok_emb + pos_emb
# run the bag of words context module
x = self.context_block(x)
# decode to next token probability
logits = self.lm_head(x)
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
# -----------------------------------------------------------------------------
"""
Recurrent Neural Net language model: either a vanilla RNN recurrence or a GRU.
Did not implement an LSTM because its API is a bit more annoying as it has
both a hidden state and a cell state, but it's very similar to GRU and in
practice works just as well.
"""
class RNNCell(nn.Module):
"""
the job of a 'Cell' is to:
take input at current time step x_{t} and the hidden state at the
previous time step h_{t-1} and return the resulting hidden state
h_{t} at the current timestep
"""
def __init__(self, config):
super().__init__()
self.xh_to_h = nn.Linear(config.n_embd + config.n_embd2, config.n_embd2)
def forward(self, xt, hprev):
xh = torch.cat([xt, hprev], dim=1)
ht = F.tanh(self.xh_to_h(xh))
return ht
class GRUCell(nn.Module):
"""
same job as RNN cell, but a bit more complicated recurrence formula
that makes the GRU more expressive and easier to optimize.
"""
def __init__(self, config):
super().__init__()
# input, forget, output, gate
self.xh_to_z = nn.Linear(config.n_embd + config.n_embd2, config.n_embd2)
self.xh_to_r = nn.Linear(config.n_embd + config.n_embd2, config.n_embd2)
self.xh_to_hbar = nn.Linear(config.n_embd + config.n_embd2, config.n_embd2)
def forward(self, xt, hprev):
# first use the reset gate to wipe some channels of the hidden state to zero
xh = torch.cat([xt, hprev], dim=1)
r = F.sigmoid(self.xh_to_r(xh))
hprev_reset = r * hprev
# calculate the candidate new hidden state hbar
xhr = torch.cat([xt, hprev_reset], dim=1)
hbar = F.tanh(self.xh_to_hbar(xhr))
# calculate the switch gate that determines if each channel should be updated at all
z = F.sigmoid(self.xh_to_z(xh))
# blend the previous hidden state and the new candidate hidden state
ht = (1 - z) * hprev + z * hbar
return ht
class RNN(nn.Module):
def __init__(self, config, cell_type):
super().__init__()
self.block_size = config.block_size
self.vocab_size = config.vocab_size
self.start = nn.Parameter(torch.zeros(1, config.n_embd2)) # the starting hidden state
self.wte = nn.Embedding(config.vocab_size, config.n_embd) # token embeddings table
if cell_type == 'rnn':
self.cell = RNNCell(config)
elif cell_type == 'gru':
self.cell = GRUCell(config)
self.lm_head = nn.Linear(config.n_embd2, self.vocab_size)
def get_block_size(self):
return self.block_size
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
# embed all the integers up front and all at once for efficiency
emb = self.wte(idx) # (b, t, n_embd)
# sequentially iterate over the inputs and update the RNN state each tick
hprev = self.start.expand((b, -1)) # expand out the batch dimension
hiddens = []
for i in range(t):
xt = emb[:, i, :] # (b, n_embd)
ht = self.cell(xt, hprev) # (b, n_embd2)
hprev = ht
hiddens.append(ht)
# decode the outputs
hidden = torch.stack(hiddens, 1) # (b, t, n_embd2)
logits = self.lm_head(hidden)
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
# -----------------------------------------------------------------------------
# MLP language model
class MLP(nn.Module):
"""
takes the previous block_size tokens, encodes them with a lookup table,
concatenates the vectors and predicts the next token with an MLP.
Reference:
Bengio et al. 2003 https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
"""
def __init__(self, config):
super().__init__()
self.block_size = config.block_size
self.vocab_size = config.vocab_size
self.wte = nn.Embedding(config.vocab_size + 1, config.n_embd) # token embeddings table
# +1 in the line above for a special <BLANK> token that gets inserted if encoding a token
# before the beginning of the input sequence
self.mlp = nn.Sequential(
nn.Linear(self.block_size * config.n_embd, config.n_embd2),
nn.Tanh(),
nn.Linear(config.n_embd2, self.vocab_size)
)
def get_block_size(self):
return self.block_size
def forward(self, idx, targets=None):
# gather the word embeddings of the previous 3 words
embs = []
for k in range(self.block_size):
tok_emb = self.wte(idx) # token embeddings of shape (b, t, n_embd)
idx = torch.roll(idx, 1, 1)
idx[:, 0] = self.vocab_size # special <BLANK> token
embs.append(tok_emb)
# concat all of the embeddings together and pass through an MLP
x = torch.cat(embs, -1) # (b, t, n_embd * block_size)
logits = self.mlp(x)
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
# -----------------------------------------------------------------------------
# Bigram language model
class Bigram(nn.Module):
"""
Bigram Language Model 'neural net', simply a lookup table of logits for the
next character given a previous character.
"""
def __init__(self, config):
super().__init__()
n = config.vocab_size
self.logits = nn.Parameter(torch.zeros((n, n)))
def get_block_size(self):
return 1 # this model only needs one previous character to predict the next
def forward(self, idx, targets=None):
# 'forward pass', lol
logits = self.logits[idx]
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
# -----------------------------------------------------------------------------
# helper functions for evaluating and sampling from the model
@torch.no_grad()
def generate(model, idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
block_size = model.get_block_size()
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= block_size else idx[:, -block_size:]
# forward the model to get the logits for the index in the sequence
logits, _ = model(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, top_k)
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# either sample from the distribution or take the most likely element
if do_sample:
idx_next = torch.multinomial(probs, num_samples=1)
else:
_, idx_next = torch.topk(probs, k=1, dim=-1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx
def print_samples(num=10):
""" samples from the model and pretty prints the decoded samples """
X_init = torch.zeros(num, 1, dtype=torch.long).to(args.device)
top_k = args.top_k if args.top_k != -1 else None
steps = train_dataset.get_output_length() - 1 # -1 because we already start with <START> token (index 0)
X_samp = generate(model, X_init, steps, top_k=top_k, do_sample=True).to('cpu')
train_samples, test_samples, new_samples = [], [], []
for i in range(X_samp.size(0)):
# get the i'th row of sampled integers, as python list
row = X_samp[i, 1:].tolist() # note: we need to crop out the first <START> token
# token 0 is the <STOP> token, so we crop the output sequence at that point
crop_index = row.index(0) if 0 in row else len(row)
row = row[:crop_index]
word_samp = train_dataset.decode(row)
# separately track samples that we have and have not seen before
if train_dataset.contains(word_samp):
train_samples.append(word_samp)
elif test_dataset.contains(word_samp):
test_samples.append(word_samp)
else:
new_samples.append(word_samp)
print('-'*80)
for lst, desc in [(train_samples, 'in train'), (test_samples, 'in test'), (new_samples, 'new')]:
print(f"{len(lst)} samples that are {desc}:")
for word in lst:
print(word)
print('-'*80)
@torch.inference_mode()
def evaluate(model, dataset, batch_size=50, max_batches=None):
model.eval()
loader = DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=0)
losses = []
for i, batch in enumerate(loader):
batch = [t.to(args.device) for t in batch]
X, Y = batch
logits, loss = model(X, Y)
losses.append(loss.item())
if max_batches is not None and i >= max_batches:
break
mean_loss = torch.tensor(losses).mean().item()
model.train() # reset model back to training mode
return mean_loss
# -----------------------------------------------------------------------------
# helper functions for creating the training and test Datasets that emit words
class CharDataset(Dataset):
def __init__(self, words, chars, max_word_length):
self.words = words
self.chars = chars
self.max_word_length = max_word_length
self.stoi = {ch:i+1 for i,ch in enumerate(chars)}
self.itos = {i:s for s,i in self.stoi.items()} # inverse mapping
def __len__(self):
return len(self.words)
def contains(self, word):
return word in self.words
def get_vocab_size(self):
return len(self.chars) + 1 # all the possible characters and special 0 token
def get_output_length(self):
return self.max_word_length + 1 # <START> token followed by words
def encode(self, word):
ix = torch.tensor([self.stoi[w] for w in word], dtype=torch.long)
return ix
def decode(self, ix):
word = ''.join(self.itos[i] for i in ix)
return word
def __getitem__(self, idx):
word = self.words[idx]
ix = self.encode(word)
x = torch.zeros(self.max_word_length + 1, dtype=torch.long)
y = torch.zeros(self.max_word_length + 1, dtype=torch.long)
x[1:1+len(ix)] = ix
y[:len(ix)] = ix
y[len(ix)+1:] = -1 # index -1 will mask the loss at the inactive locations
return x, y
def create_datasets(input_file):
# preprocessing of the input text file
with open(input_file, 'r') as f:
data = f.read()
words = data.splitlines()
words = [w.strip() for w in words] # get rid of any leading or trailing white space
words = [w for w in words if w] # get rid of any empty strings
chars = sorted(list(set(''.join(words)))) # all the possible characters
max_word_length = max(len(w) for w in words)
print(f"number of examples in the dataset: {len(words)}")
print(f"max word length: {max_word_length}")
print(f"number of unique characters in the vocabulary: {len(chars)}")
print("vocabulary:")
print(''.join(chars))
# partition the input data into a training and the test set
test_set_size = min(1000, int(len(words) * 0.1)) # 10% of the training set, or up to 1000 examples
rp = torch.randperm(len(words)).tolist()
train_words = [words[i] for i in rp[:-test_set_size]]
test_words = [words[i] for i in rp[-test_set_size:]]
print(f"split up the dataset into {len(train_words)} training examples and {len(test_words)} test examples")
# wrap in dataset objects
train_dataset = CharDataset(train_words, chars, max_word_length)
test_dataset = CharDataset(test_words, chars, max_word_length)
return train_dataset, test_dataset
class InfiniteDataLoader:
"""
this is really hacky and I'm not proud of it, but there doesn't seem to be
a better way in PyTorch to just create an infinite dataloader?
"""
def __init__(self, dataset, **kwargs):
train_sampler = torch.utils.data.RandomSampler(dataset, replacement=True, num_samples=int(1e10))
self.train_loader = DataLoader(dataset, sampler=train_sampler, **kwargs)
self.data_iter = iter(self.train_loader)
def next(self):
try:
batch = next(self.data_iter)
except StopIteration: # this will technically only happen after 1e10 samples... (i.e. basically never)
self.data_iter = iter(self.train_loader)
batch = next(self.data_iter)
return batch
# -----------------------------------------------------------------------------
if __name__ == '__main__':
# parse command line args
parser = argparse.ArgumentParser(description="Make More")
# system/input/output
parser.add_argument('--input-file', '-i', type=str, default='names.txt', help="input file with things one per line")
parser.add_argument('--work-dir', '-o', type=str, default='out', help="output working directory")
parser.add_argument('--resume', action='store_true', help="when this flag is used, we will resume optimization from existing model in the workdir")
parser.add_argument('--sample-only', action='store_true', help="just sample from the model and quit, don't train")
parser.add_argument('--num-workers', '-n', type=int, default=4, help="number of data workers for both train/test")
parser.add_argument('--max-steps', type=int, default=-1, help="max number of optimization steps to run for, or -1 for infinite.")
parser.add_argument('--device', type=str, default='cpu', help="device to use for compute, examples: cpu|cuda|cuda:2|mps")
parser.add_argument('--seed', type=int, default=3407, help="seed")
# sampling
parser.add_argument('--top-k', type=int, default=-1, help="top-k for sampling, -1 means no top-k")
# model
parser.add_argument('--type', type=str, default='transformer', help="model class type to use, bigram|mlp|rnn|gru|bow|transformer")
parser.add_argument('--n-layer', type=int, default=4, help="number of layers")
parser.add_argument('--n-head', type=int, default=4, help="number of heads (in a transformer)")
parser.add_argument('--n-embd', type=int, default=64, help="number of feature channels in the model")
parser.add_argument('--n-embd2', type=int, default=64, help="number of feature channels elsewhere in the model")
# optimization
parser.add_argument('--batch-size', '-b', type=int, default=32, help="batch size during optimization")
parser.add_argument('--learning-rate', '-l', type=float, default=5e-4, help="learning rate")
parser.add_argument('--weight-decay', '-w', type=float, default=0.01, help="weight decay")
args = parser.parse_args()
print(vars(args))
# system inits
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
os.makedirs(args.work_dir, exist_ok=True)
writer = SummaryWriter(log_dir=args.work_dir)
# init datasets
train_dataset, test_dataset = create_datasets(args.input_file)
vocab_size = train_dataset.get_vocab_size()
block_size = train_dataset.get_output_length()
print(f"dataset determined that: {vocab_size=}, {block_size=}")
# init model
config = ModelConfig(vocab_size=vocab_size, block_size=block_size,
n_layer=args.n_layer, n_head=args.n_head,
n_embd=args.n_embd, n_embd2=args.n_embd2)
if args.type == 'transformer':
model = Transformer(config)
elif args.type == 'bigram':
model = Bigram(config)
elif args.type == 'mlp':
model = MLP(config)
elif args.type == 'rnn':
model = RNN(config, cell_type='rnn')
elif args.type == 'gru':
model = RNN(config, cell_type='gru')
elif args.type == 'bow':
model = BoW(config)
else:
raise ValueError(f'model type {args.type} is not recognized')
model.to(args.device)
print(f"model #params: {sum(p.numel() for p in model.parameters())}")
if args.resume or args.sample_only: # note: if we sample-only then we also assume we are resuming
print("resuming from existing model in the workdir")
model.load_state_dict(torch.load(os.path.join(args.work_dir, 'model.pt')))
if args.sample_only:
print_samples(num=50)
sys.exit()
# init optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay, betas=(0.9, 0.99), eps=1e-8)
# init dataloader
batch_loader = InfiniteDataLoader(train_dataset, batch_size=args.batch_size, pin_memory=True, num_workers=args.num_workers)
# training loop
best_loss = None
step = 0
while True:
t0 = time.time()
# get the next batch, ship to device, and unpack it to input and target
batch = batch_loader.next()
batch = [t.to(args.device) for t in batch]
X, Y = batch
# feed into the model
logits, loss = model(X, Y)
# calculate the gradient, update the weights
model.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# wait for all CUDA work on the GPU to finish then calculate iteration time taken
if args.device.startswith('cuda'):
torch.cuda.synchronize()
t1 = time.time()
# logging
if step % 10 == 0:
print(f"step {step} | loss {loss.item():.4f} | step time {(t1-t0)*1000:.2f}ms")
# evaluate the model
if step > 0 and step % 500 == 0:
train_loss = evaluate(model, train_dataset, batch_size=100, max_batches=10)
test_loss = evaluate(model, test_dataset, batch_size=100, max_batches=10)
writer.add_scalar("Loss/train", train_loss, step)
writer.add_scalar("Loss/test", test_loss, step)
writer.flush()
print(f"step {step} train loss: {train_loss} test loss: {test_loss}")
# save the model to disk if it has improved
if best_loss is None or test_loss < best_loss:
out_path = os.path.join(args.work_dir, "model.pt")
print(f"test loss {test_loss} is the best so far, saving model to {out_path}")
torch.save(model.state_dict(), out_path)
best_loss = test_loss
# sample from the model
if step > 0 and step % 200 == 0:
print_samples(num=10)
step += 1
# termination conditions
if args.max_steps >= 0 and step >= args.max_steps:
break