-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
53 lines (44 loc) · 1.88 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
def getSkewAngle(cvImage) -> float:
# Prep image, copy, convert to gray scale, blur, and threshold
newImage = cvImage.copy()
gray = cv2.cvtColor(newImage, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (9, 9), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Apply dilate to merge text into meaningful lines/paragraphs.
# Use larger kernel on X axis to merge characters into single line, cancelling out any spaces.
# But use smaller kernel on Y axis to separate between different blocks of text
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 5))
dilate = cv2.dilate(thresh, kernel, iterations=2)
# Find all contours
contours, hierarchy = cv2.findContours(
dilate, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
)
contours = sorted(contours, key=cv2.contourArea, reverse=True)
for c in contours:
rect = cv2.boundingRect(c)
x, y, w, h = rect
cv2.rectangle(newImage, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Find largest contour and surround in min area box
largestContour = contours[0]
print(len(contours))
minAreaRect = cv2.minAreaRect(largestContour)
# cv2.imwrite("temp/boxes.jpg", newImage)
# Determine the angle. Convert it to the value that was originally used to obtain skewed image
angle = minAreaRect[-1]
if angle < -45:
angle = 90 + angle
return -1.0 * angle
# Rotate the image around its center
def rotateImage(cvImage, angle: float):
newImage = cvImage.copy()
(h, w) = newImage.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
newImage = cv2.warpAffine(
newImage, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE
)
return newImage
def deskew(cvImage):
angle = getSkewAngle(cvImage)
return rotateImage(cvImage, -1.0 * angle)