forked from sublimehq/anim_encoder
-
Notifications
You must be signed in to change notification settings - Fork 1
/
anim_encoder.py
executable file
·230 lines (181 loc) · 7.7 KB
/
anim_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#!/usr/bin/python
# Copyright (c) 2012, Sublime HQ Pty Ltd
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the <organization> nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import scipy.ndimage.measurements as me
import json
import scipy.misc as misc
import re
import sys
import os
import cv2
from numpy import *
from time import time
# How long to wait before the animation restarts
END_FRAME_PAUSE = 4000
# How many pixels can be wasted in the name of combining neighbouring changed
# regions.
SIMPLIFICATION_TOLERANCE = 512
MAX_PACKED_HEIGHT = 10000
def slice_size(a, b):
return (a.stop - a.start) * (b.stop - b.start)
def combine_slices(a, b, c, d):
return (slice(min(a.start, c.start), max(a.stop, c.stop)),
slice(min(b.start, d.start), max(b.stop, d.stop)))
def slices_intersect(a, b, c, d):
if (a.start >= c.stop): return False
if (c.start >= a.stop): return False
if (b.start >= d.stop): return False
if (d.start >= b.stop): return False
return True
# Combine a large set of rectangles into a smaller set of rectangles,
# minimising the number of additional pixels included in the smaller set of
# rectangles
def simplify(boxes, tol = 0):
out = []
for a,b in boxes:
sz1 = slice_size(a, b)
did_combine = False
for i in xrange(len(out)):
c,d = out[i]
cu, cv = combine_slices(a, b, c, d)
sz2 = slice_size(c, d)
if slices_intersect(a, b, c, d) or (slice_size(cu, cv) <= sz1 + sz2 + tol):
out[i] = (cu, cv)
did_combine = True
break
if not did_combine:
out.append((a,b))
if tol != 0:
return simplify(out, 0)
else:
return out
def slice_tuple_size(s):
a, b = s
return (a.stop - a.start) * (b.stop - b.start)
# Allocates space in the packed image. This does it in a slow, brute force
# manner.
class Allocator2D:
def __init__(self, rows, cols):
self.bitmap = zeros((rows, cols), dtype=uint8)
self.available_space = zeros(rows, dtype=uint32)
self.available_space[:] = cols
self.num_used_rows = 0
def allocate(self, w, h):
bh, bw = shape(self.bitmap)
for row in xrange(bh - h + 1):
if self.available_space[row] < w:
continue
for col in xrange(bw - w + 1):
if self.bitmap[row, col] == 0:
if not self.bitmap[row:row+h,col:col+w].any():
self.bitmap[row:row+h,col:col+w] = 1
self.available_space[row:row+h] -= w
self.num_used_rows = max(self.num_used_rows, row + h)
return row, col
raise RuntimeError()
def find_matching_rect(bitmap, num_used_rows, packed, src, sx, sy, w, h):
template = src[sy:sy+h, sx:sx+w]
bh, bw = shape(bitmap)
image = packed[0:num_used_rows, 0:bw]
if num_used_rows < h:
return None
result = cv2.matchTemplate(image,template,cv2.TM_CCOEFF_NORMED)
row,col = unravel_index(result.argmax(),result.shape)
if ((packed[row:row+h,col:col+w] == src[sy:sy+h,sx:sx+w]).all()
and (packed[row:row+1,col:col+w,0] == src[sy:sy+1,sx:sx+w,0]).all()):
return row,col
else:
return None
def generate_animation(anim_name):
frames = []
rex = re.compile("screen_([0-9]+).png")
for f in os.listdir(anim_name):
m = re.search(rex, f)
if m:
frames.append((int(m.group(1)), anim_name + "/" + f))
frames.sort()
images = [misc.imread(f) for t, f in frames]
zero = images[0] - images[0]
pairs = zip([zero] + images[:-1], images)
diffs = [sign((b - a).max(2)) for a, b in pairs]
# Find different objects for each frame
img_areas = [me.find_objects(me.label(d)[0]) for d in diffs]
# Simplify areas
img_areas = [simplify(x, SIMPLIFICATION_TOLERANCE) for x in img_areas]
ih, iw, _ = shape(images[0])
# Generate a packed image
allocator = Allocator2D(MAX_PACKED_HEIGHT, iw)
packed = zeros((MAX_PACKED_HEIGHT, iw, 3), dtype=uint8)
# Sort the rects to be packed by largest size first, to improve the packing
rects_by_size = []
for i in xrange(len(images)):
src_rects = img_areas[i]
for j in xrange(len(src_rects)):
rects_by_size.append((slice_tuple_size(src_rects[j]), i, j))
rects_by_size.sort(reverse = True)
allocs = [[None] * len(src_rects) for src_rects in img_areas]
print anim_name,"packing, num rects:",len(rects_by_size),"num frames:",len(images)
t0 = time()
for size,i,j in rects_by_size:
src = images[i]
src_rects = img_areas[i]
a, b = src_rects[j]
sx, sy = b.start, a.start
w, h = b.stop - b.start, a.stop - a.start
# See if the image data already exists in the packed image. This takes
# a long time, but results in worthwhile space savings (20% in one
# test)
existing = find_matching_rect(allocator.bitmap, allocator.num_used_rows, packed, src, sx, sy, w, h)
if existing:
dy, dx = existing
allocs[i][j] = (dy, dx)
else:
dy, dx = allocator.allocate(w, h)
allocs[i][j] = (dy, dx)
packed[dy:dy+h, dx:dx+w] = src[sy:sy+h, sx:sx+w]
print anim_name,"packing finished, took:",time() - t0
packed = packed[0:allocator.num_used_rows]
misc.imsave(anim_name + "_packed_tmp.png", packed)
os.system("pngcrush -q " + anim_name + "_packed_tmp.png " + anim_name + "_packed.png")
os.system("rm " + anim_name + "_packed_tmp.png")
# Generate JSON to represent the data
times = [t for t, f in frames]
delays = (array(times[1:] + [times[-1] + END_FRAME_PAUSE]) - array(times)).tolist()
timeline = []
for i in xrange(len(images)):
src_rects = img_areas[i]
dst_rects = allocs[i]
blitlist = []
for j in xrange(len(src_rects)):
a, b = src_rects[j]
sx, sy = b.start, a.start
w, h = b.stop - b.start, a.stop - a.start
dy, dx = dst_rects[j]
blitlist.append([dx, dy, w, h, sx, sy])
timeline.append({'delay': delays[i], 'blit': blitlist})
f = open(anim_name + '_anim.js', 'wb')
f.write(anim_name + "_timeline = ")
json.dump(timeline, f)
f.close()
if __name__ == '__main__':
generate_animation(sys.argv[1])