forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSprintExternInterface.py
235 lines (190 loc) · 8.45 KB
/
SprintExternInterface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
This is a Sprint interface implementation.
See SprintInterface.py for another Sprint interface.
This Sprint interface is to be used for ExternSprintDataset, which should automatically use it.
"""
from __future__ import print_function
import better_exchook
import sys
import os
import TaskSystem
from TaskSystem import Pickler, Unpickler
from Util import to_bool, unicode, PY3, BytesIO
# Start Sprint PythonSegmentOrder interface. {
# We use the PythonSegmentOrder just to get an estimate (upper limit) about the number of sequences.
segmentOrderList = None; ":type: list[str] "
def getSegmentList(corpusName, segmentList, **kwargs):
"""
Called by Sprint PythonSegmentOrder.
Set python-segment-order = true in Sprint to use this.
If this is used, this gets called really early.
If it is used together with the Sprint PythonTrainer,
it will get called way earlier before the init() below.
It might also get called multiple times, e.g. if
Sprint is in interactive mode to calc the seg count.
This is optional. You can use the SprintInterface
only for the PythonTrainer.
:type corpusName: str
:type segmentList: list[str]
:rtype: list[str]
:returns segment list. Can also be an iterator.
"""
print("SprintExternInterface: getSegmentList(%r), num segments: %i" % (corpusName, len(segmentList)))
global segmentOrderList
segmentOrderList = segmentList
# No shuffling here. We expect to do that via Sprint.
return segmentList
# End Sprint PythonSegmentOrder interface. }
# Start Sprint PythonTrainer interface. {
isInitialized = False
def exchook(exc_type, exc_obj, exc_tb):
if exc_type is KeyboardInterrupt:
print("SprintExternInterface[pid %i]: KeyboardInterrupt" % (os.getpid(),))
sys.exit(1)
better_exchook.better_exchook(exc_type, exc_obj, exc_tb)
def init(**kwargs):
sys.excepthook = exchook
# This module can also be used for Sprint PythonControl, which will also call init().
# We need to catch these cases.
if "name" in kwargs and kwargs["name"] == "Sprint.PythonControl":
return PythonControl.init(**kwargs)
return init_PythonTrainer(**kwargs)
def _parse_config_str(config_str):
assert isinstance(config_str, (str, unicode))
config_list = config_str.split(",")
config = {key: value for (key, value) in [s.split(":", 1) for s in config_list if s]}
return config
def _common_init(config):
if to_bool(config.get("EnableAutoNumpySharedMemPickling", False)) and not TaskSystem.SharedMemNumpyConfig["enabled"]:
TaskSystem.SharedMemNumpyConfig["enabled"] = True
print("SprintExternInterface[pid %i] EnableAutoNumpySharedMemPickling = True" % (os.getpid(),))
def init_PythonTrainer(inputDim, outputDim, config, targetMode, **kwargs):
"""
Called by Sprint when it initializes the PythonTrainer.
Set trainer = python-trainer in Sprint to enable.
Note that Sprint will call this, i.e. the trainer init lazily quite late,
only once it sees the first data.
:type inputDim: int
:type outputDim: int
:param str config: config string, passed by Sprint. assumed to be ","-separated
:param str targetMode: "target-alignment" or "criterion-by-sprint" or so
"""
print("SprintExternInterface[pid %i]: PythonTrainer init_PythonTrainer()" % (os.getpid(),))
print("inputDim:", inputDim)
print("outputDim:", outputDim)
print("config:", config)
print("targetMode:", targetMode)
print("other args:", kwargs)
global InputDim, OutputDim, isInitialized
InputDim = inputDim
OutputDim = outputDim
isInitialized = True
assert targetMode != "criterion-by-sprint"
config = _parse_config_str(config)
assert config["action"] == "ExternSprintDataset"
_common_init(config)
_init_global_sprintDataset(inputDim=inputDim, outputDim=outputDim, config=config)
sprintDataset = None; ":type: ExternSprintDatasetSource"
def _init_global_sprintDataset(inputDim, outputDim, config):
global sprintDataset
if sprintDataset: return
numSegments = len(segmentOrderList) if segmentOrderList is not None else None
sprintDataset = ExternSprintDatasetSource(c2p_fd=int(config["c2p_fd"]), p2c_fd=int(config["p2c_fd"]),
inputDim=inputDim, outputDim=outputDim, numSegments=numSegments)
def exit():
print("SprintExternInterface: PythonTrainer exit()")
assert isInitialized
sprintDataset.close()
def feedInput(features, weights=None, segmentName=None): # unsupervised case
feedInputAndTarget(features=features, weights=weights, segmentName=segmentName)
def feedInputAndTargetAlignment(features, targetAlignment, weights=None, segmentName=None):
feedInputAndTarget(features=features, alignment=targetAlignment, weights=weights, segmentName=segmentName)
def feedInputAndTargetSegmentOrth(features, targetSegmentOrth, weights=None, segmentName=None):
feedInputAndTarget(features=features, orthography=targetSegmentOrth, weights=weights, segmentName=segmentName)
feedInputUnsupervised = feedInput
def feedInputAndTarget(features, weights=None, segmentName=None,
orthography=None, alignment=None,
speaker_name=None, speaker_gender=None,
**kwargs):
assert features.shape[0] == InputDim
targets = {}
if alignment is not None:
targets["classes"] = alignment
if orthography is not None:
targets["orth"] = orthography
sprintDataset.addNewData(segmentName=segmentName, features=features, targets=targets)
# End Sprint PythonTrainer interface. }
# Start Sprint PythonControl interface. {
class PythonControl:
instance = None
@classmethod
def init(cls, **kwargs): # called by global init().
print("SprintExternInterface[pid %i]: PythonControl init %r" % (os.getpid(), kwargs))
if cls.instance:
return cls.instance
cls.instance = cls(**kwargs)
return cls.instance
def __init__(self, config, **kwargs):
self.config = _parse_config_str(config)
_common_init(self.config)
def init_processing(self, input_dim, output_dim, **kwargs):
print("SprintExternInterface: PythonControl init_processing inputDim=%i, outputDim=%i, other:%r" % (input_dim, output_dim, kwargs))
_init_global_sprintDataset(inputDim=input_dim, outputDim=output_dim, config=self.config)
def process_segment(self, name, orthography, features, alignment, soft_alignment, **kwargs):
assert sprintDataset
targets = {}
if orthography is not None:
targets["orth"] = orthography
if alignment is not None:
targets["classes"] = alignment
elif soft_alignment is not None:
# We expect a sparse soft-alignment in coordinate format (time, class-idx, weight [0,1]).
assert isinstance(soft_alignment, tuple)
assert len(soft_alignment) == 3
# We encode: sparse-coo-format, ndim == 2.
targets["classes[sparse:coo:2:0]"] = soft_alignment[0]
targets["classes[sparse:coo:2:1]"] = soft_alignment[1]
targets["classes[sparse:coo:2:2]"] = soft_alignment[2]
sprintDataset.addNewData(segmentName=name, features=features, targets=targets)
def exit(self, **kwargs):
print("SprintExternInterface: PythonControl exit %r" % kwargs)
if sprintDataset:
sprintDataset.close()
# End Sprint PythonControl interface. }
class ExternSprintDatasetSource:
"""
This will send data to ExternSprintDataset over a pipe.
We expect that we are child process and the parent process has spawned us via ExternSprintDataset
and is waiting for our data.
"""
def __init__(self, c2p_fd, p2c_fd, inputDim, outputDim, numSegments):
"""
:param int c2p_fd: child-to-parent file descriptor
:param int p2c_fd: parent-to-child file descriptor
:type inputDim: int
:type outputDim: int
:type numSegments: int | None
:param numSegments: can be None if not known in advance
"""
self.pipe_c2p = os.fdopen(c2p_fd, "wb")
self.pipe_p2c = os.fdopen(p2c_fd, "rb")
self._send("init", (inputDim, outputDim, numSegments))
def _send(self, dataType, args=None):
import struct
stream = BytesIO()
Pickler(stream).dump((dataType, args))
raw_data = stream.getvalue()
self.pipe_c2p.write(struct.pack("<i", len(raw_data)))
self.pipe_c2p.write(raw_data)
self.pipe_c2p.flush()
def addNewData(self, segmentName, features, targets):
"""
:param str segmentName:
:param numpy.ndarray features: 2D array, (feature,time)
:param dict[str,numpy.ndarray] targets: each target is either 1D (time->idx) or 2D (time,class)
"""
self._send("data", (segmentName, features, targets))
def close(self):
self._send("exit")
self.pipe_c2p.close()
self.pipe_p2c.close()