forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSprintControl.py
587 lines (512 loc) · 24.2 KB
/
SprintControl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
"""
This is the Sprint interface implementation,
concretely for Sprint PythonControl, Sprint PythonSegmentOrder and Sprint SprintNnPythonLayer.
For reference, in Sprint code, see:
* src/Nn/PythonControl.cc
* src/Tools/NnTrainer/python_control_demo.py
This interface will behave similar as SprintExternInterface.
See SprintErrorSignals for the other end.
It can also be used as a PythonSegmentOrdering interface.
It also supports SprintNnPythonLayer.
"""
from __future__ import print_function
import rnn
import Debug
import os
import numpy
import TaskSystem
from TaskSystem import Pickler, Unpickler, numpy_set_unused
from Util import to_bool
from threading import Condition
InitTypes = set()
Verbose = False # disables all per-segment log messages
Quiet = False # disables all but error messages
_orig_print = print
def print(*args, **kwargs):
if not Quiet:
_orig_print(*args, **kwargs)
print("CRNN SprintControl[pid %i] Python module load" % os.getpid())
rnn.initBetterExchook()
Debug.initFaulthandler(sigusr1_chain=True) # Sprint also handles SIGUSR1.
rnn.initThreadJoinHack()
# Start Sprint PythonControl interface. {
def init(name, reference, config, sprint_unit=None, version_number=None, callback=None, **kwargs):
"""
This will be called by Sprint PythonControl.
But we also call it ourselves e.g. in getSegmentList() and SprintNnPythonLayer.
:param str name: this specifies the caller. e.g. "Sprint.PythonControl"
:param reference: this is any object to identify the specific instance of the caller, if there are multiple.
:param str config: this will be passed over from Sprint. you can configure that via --*.pymod-config.
:param str sprint_unit: if this is called by Sprint PythonControl, this will specify which specific part
of Sprint is using this PythonControl, because there can be multiple parts.
E.g. there is "FeedForwardTrainer", "SegmentwiseNnTrainer" and "NnTrainer.pythonControl".
:param int|None version_number: if this is called by Sprint PythonControl, this will set the version number.
only newer Sprint versions will set this.
:param function|None callback: if this is called by Sprint PythonControl, this might provide a callback.
Only newer Sprint versions will provide this to init().
This callback can be used for many different actions.
It's supposed to be called like callback(action, **other_args), where action is a string.
See Sprint PythonControl code about the possible actions and arguments.
:param kwargs: all remaining args are specific for each caller.
In this specific module, we expect that there is "c2p_fd" and "p2c_fd" in the config string
to communicate with the parent process, which is usually handled by SprintErrorSignals.
"""
config = config.split(",")
config = {key: value for (key, value) in [s.split(":", 1) for s in config if s]}
global Quiet
if to_bool(config.get("quiet", False)):
Quiet = True
print("CRNN SprintControl[pid %i] init: name=%r, sprint_unit=%r, version_number=%r, callback=%r, ref=%r, config=%r, kwargs=%r" % (
os.getpid(), name, sprint_unit, version_number, callback, reference, config, kwargs))
InitTypes.add(name)
global Verbose
if to_bool(config.get("verbose", False)):
Verbose = True
if to_bool(config.get("EnableAutoNumpySharedMemPickling", False)) and not TaskSystem.SharedMemNumpyConfig["enabled"]:
TaskSystem.SharedMemNumpyConfig["enabled"] = True
print("CRNN SprintControl[pid %i] EnableAutoNumpySharedMemPickling = True" % (os.getpid(),))
# Remaining Sprint interface is in this PythonControl instance.
return PythonControl.create(c2p_fd=int(config["c2p_fd"]), p2c_fd=int(config["p2c_fd"]),
name=name, reference=reference, config=config,
sprint_unit=sprint_unit,
version_number=version_number,
min_version_number=int(config["minPythonControlVersion"]),
callback=callback,
**kwargs)
# End Sprint PythonControl interface. }
# Start Sprint PythonSegmentOrder interface. {
def getSegmentList(corpusName, segmentList, config, **kwargs):
"""
Sprint will directly call this function.
"""
print("CRNN SprintControl[pid %i] getSegmentList: corpus=%r, config=%r" % (os.getpid(), corpusName, config))
# If we were not initialized via PythonControl interface, this will initialize us
# and setup the communication channel (PythonControl).
init(name="CRNN.PythonSegmentOrder", reference=corpusName, config=config)
PythonControl.instance.check_control_loop_running()
for segment_name in PythonControl.instance.segment_list_iterator():
yield segment_name
# End Sprint PythonSegmentOrder interface. }
# Start SprintNnPythonLayer. {
class SprintNnPythonLayer:
"""
Sprint will directly call this class, i.e. create an instance of it.
It implements the Sprint NN PythonLayer interface.
"""
def __init__(self, config, **kwargs):
print("CRNN SprintControl[pid %i] SprintNnPythonLayer.__init__: %r, %r" % (os.getpid(), config, kwargs))
# If we were not initialized via PythonControl interface, this will initialize us
# and setup the communication channel (PythonControl).
init(name="CRNN.SprintNnPythonLayer", reference=self, config=config)
self.input_size = None
self.output_size = None
def finalize(self):
print("CRNN SprintControl[pid %i] SprintNnPythonLayer.finalize" % (os.getpid(),))
def setInputDimension(self, stream, size):
print("CRNN SprintControl[pid %i] SprintNnPythonLayer.setInputDimension: stream=%r, size=%r" % (os.getpid(), stream, size))
assert stream == 0, "we only support a single input stream (for now)"
self.input_size = size
def setOutputDimension(self, size):
print("CRNN SprintControl[pid %i] SprintNnPythonLayer.setOutputDimension: %r" % (os.getpid(), size))
self.output_size = size
def initializeNetworkParameters(self):
print("CRNN SprintControl[pid %i] SprintNnPythonLayer.initializeNetworkParameters" % (os.getpid(),))
# Just ignore.
def loadNetworkParameters(self, filename):
print("CRNN SprintControl[pid %i] SprintNnPythonLayer.loadNetworkParameters: %r" % (os.getpid(), filename))
# Just ignore.
def saveNetworkParameters(self, filename):
print("CRNN SprintControl[pid %i] SprintNnPythonLayer.saveNetworkParameters: %r" % (os.getpid(), filename))
# Just ignore.
def isTrainable(self):
# Always trainable.
return True
def getNumberOfFreeParameters(self):
# For now, just ignore. Not important.
return 0
def forward(self, input):
"""
:param input: tuple of input matrices of format (input_size,time). we ignore them.
:return: single output matrix of format (output_size,time)
"""
if Verbose: print("CRNN SprintControl[pid %i] SprintNnPythonLayer.forward: %s" % (os.getpid(), input[0].shape if input else repr(input)[:10]))
assert len(input) == 1
assert input[0].ndim == 2
assert input[0].shape[0] == self.input_size
seg_len = input[0].shape[1]
posteriors = PythonControl.instance.get_current_seg_posteriors(seg_len=seg_len) # (time,label)
if PythonControl.instance.posteriors_in_log_space:
assert PythonControl.instance.sprint_knows_about_log_space_probs
assert posteriors.shape == (seg_len, self.output_size)
return posteriors.T
def backpropagate(self, errorSignalIn):
"""
:param errorSignalIn: matrix of format (output_size,time)
:return: tuple of matrices of format (input_size,time)
"""
if Verbose: print("CRNN SprintControl[pid %i] SprintNnPythonLayer.backpropagate: %r" % (os.getpid(), errorSignalIn.shape))
assert errorSignalIn.ndim == 2
assert errorSignalIn.shape[0] == self.output_size
seg_len = errorSignalIn.shape[1]
PythonControl.instance.set_current_seg_error_signal(seg_len=seg_len, error_signal=errorSignalIn.T)
# must return a 1-tuple
return (numpy.zeros((self.input_size, seg_len), dtype="float32"),)
# End SprintNnPythonLayer. }
class PythonControl:
"""
This will send data to CRNN over a pipe.
We expect that we are child process and the parent process has spawned us,
An instance of this class is also the interface for multiple Sprint interfaces, i.e.:
* PythonControl (standalone via NnTrainer tool)
* PythonControl (via SegmentwiseNnTrainer)
* implicitly PythonSegmentOrder (see code above)
"""
Version = 1 # increase when some protocol changes
instance = None; ":type: PythonControl"
@classmethod
def create(cls, **kwargs):
if cls.instance:
cls.instance._additional_init(**kwargs)
return cls.instance
print("CRNN SprintControl[pid %i] PythonControl create %r" %(os.getpid(), kwargs))
return PythonControl(**kwargs)
def __init__(self, c2p_fd, p2c_fd, **kwargs):
"""
:param int c2p_fd: child-to-parent file descriptor
:param int p2c_fd: parent-to-child file descriptor
"""
print("CRNN SprintControl[pid %i] PythonControl init %r" % (os.getpid(), kwargs))
assert not self.__class__.instance, "only one instance expected"
self.__class__.instance = self
self.cond = Condition()
self.pipe_c2p = os.fdopen(c2p_fd, "wb")
self.pipe_p2c = os.fdopen(p2c_fd, "rb")
self.sprint_callback = None # via self._init
self.sprint_version_number = None # via self._init
self.callback = None # either via Sprint, or self.own_threaded_callback
self.loss_and_error_signal_via_sprint_callback = False
# So, we get posteriors here from SprintErrorSignals. This will give us always log-probs for now.
self.posteriors_in_log_space = True # right now, not configurable
# We directly forward these posteriors like they are to Sprint. So we assume
# that Sprint knows about this. For CTC, this is e.g. the option --*.input-in-log-space=true.
# The Sequence training setup would have a special BiasLayer after the PythonLayer
# and Sprint assumes log-probs in that case.
# For other cases, Sprint might not know. We can easily handle that here.
self.sprint_knows_about_log_space_probs = True # right now, not configurable
self.control_loop_started = False
self.control_loop_exited = False
self.control_thread__have_new_seg = False
self.control_thread__have_new_error_signal = False
self.seg_name = None
self.seg_len = None
self.posteriors = None
self.asked_for_posteriors = False
self.notified_for_segment = False
self.error_signal = None
self.loss = None
self._init(**kwargs)
def _additional_init(self, **kwargs):
print("CRNN SprintControl[pid %i] PythonControl additional_init %r" %(os.getpid(), kwargs))
self._init(**kwargs)
def _init(self, name, sprint_unit=None, callback=None, version_number=None, min_version_number=None, **kwargs):
if name == "Sprint.PythonControl":
print("CRNN SprintControl[pid %i] init for Sprint.PythonControl %r" % (os.getpid(), kwargs))
assert min_version_number
assert (version_number or 0) >= min_version_number, "need new Sprint"
self.sprint_version_number = version_number
if callback:
self.sprint_callback = callback
def init_processing(self, input_dim=None, output_dim=None, **kwargs):
"""
This is called via Sprint when we use PythonControl to iterate the corpus,
i.e. we set --*.action=python-control in Sprint in the NN trainer tool.
We expect that we use the Sprint callback to calculate loss and error signal.
This is called on the first segment.
input_dim/output_dim are set iff we extract features/alignments.
"""
print("CRNN SprintControl[pid %i] init_processing input_dim=%r, output_dim=%r" % (os.getpid(), input_dim, output_dim))
print("CRNN SprintControl[pid %i] loss_and_error_signal_via_sprint_callback enabled" % (os.getpid(),))
self.loss_and_error_signal_via_sprint_callback = True
assert self.sprint_callback
def process_segment(self, name, orthography, features=None, alignment=None, soft_alignment=None, **kwargs):
"""
This is called via Sprint when we use PythonControl to iterate the corpus.
:param str name: segment name
:param str orthography: segment orth
"""
if Verbose: print("CRNN SprintControl[pid %i] process_segment name=%r orth=%r" % (os.getpid(), name, orthography[:10] + "..."))
assert self.loss_and_error_signal_via_sprint_callback
assert self.seg_name == name # via self.handle_cmd_get_loss_and_error_signal()
assert self.posteriors.ndim == 2 # (time,dim)
assert features is None, "in Sprint, set --*.extract-features=false"
assert alignment is None, "in Sprint, set --*.extract-alignment=false"
assert soft_alignment is None, "in Sprint, set --*.extract-alignment=false"
loss, error_signal = \
self._get_loss_and_error_signal_via_sprint_callback(seg_name=name, orthography=orthography, posteriors=self.posteriors)
assert loss is not None
assert error_signal is not None
with self.cond:
self.loss = loss
self.error_signal = error_signal
self.cond.notifyAll()
def _get_loss_and_error_signal_via_sprint_callback(self, seg_name, orthography, posteriors):
if self.posteriors_in_log_space:
if self.sprint_knows_about_log_space_probs: # --*.input-in-log-space=true for CTC in Sprint
# We assume that Sprint will return gradient for activation before softmax, e.g. y - \hat{y} for CE/CTC.
output_error_type = "error-signal"
else:
posteriors = numpy.exp(posteriors)
output_error_type = "error-signal-before-softmax"
else:
output_error_type = "error-signal-before-softmax"
loss, error_signal = self.sprint_callback(
"calculate_criterion",
posteriors=posteriors.T, orthography=orthography, # Sprint wants shape (dim,time).
output_error_type=output_error_type,
segment_name=seg_name)
if loss is None:
return self._default_skipped_loss(), self._default_skipped_error_signal(posteriors)
error_signal = error_signal.T # Sprint returns (dim,time) shape.
assert error_signal.shape == posteriors.shape
return loss, error_signal
def _send(self, data):
Pickler(self.pipe_c2p).dump(data)
self.pipe_c2p.flush()
def _read(self):
return Unpickler(self.pipe_p2c).load()
def close(self):
self.pipe_c2p.close()
self.pipe_p2c.close()
def handle_cmd_exit(self):
self.close()
raise SystemExit
def handle_cmd_init(self, name, version):
assert version == self.Version
return "SprintControl", self.Version
def handle_cmd_get_loss_and_error_signal(self, seg_name, seg_len, posteriors):
"""
:param str seg_name: seg name
:param int seg_len: the segment length in frames
:param numpy.ndarray posteriors: 2d (time,label) float array
See SprintErrorSignals.SprintSubprocessInstance.get_loss_and_error_signal().
"""
assert isinstance(seg_len, (int, long, numpy.int32))
assert seg_len > 0
assert posteriors.ndim == 2
assert posteriors.shape[0] == seg_len
if Verbose: print("CRNN SprintControl[pid %i] PythonControl handle_cmd_get_loss_and_error_signal: name=%r, len=%r" % (os.getpid(), seg_name, seg_len))
with self.cond:
self.control_thread__have_new_seg = True
self.control_thread__have_new_error_signal = False
self.seg_name = seg_name
self.seg_len = seg_len
self.posteriors = posteriors
self.error_signal = None
self.loss = None
self.asked_for_posteriors = False
self.notified_for_segment = False
self.cond.notifyAll()
loss, error_signal = self.callback("get_loss_and_error_signal", seg_name, seg_len, posteriors)
assert error_signal.shape == posteriors.shape
with self.cond:
self.control_thread__have_new_error_signal = True
self.posteriors = None
self.cond.notifyAll()
numpy_set_unused(posteriors)
error_signal = error_signal.astype('float32', copy=False)
return loss, error_signal
def handle_cmd_export_allophone_state_fsa_by_segment_name(self, segment_name):
return self.callback("export_allophone_state_fsa_by_segment_name", segment_name)
def handle_cmd(self, cmd, *args):
func = getattr(self, "handle_cmd_%s" % cmd)
return func(*args)
def handle_next(self):
"""
Called by self.run_control_loop.
We catch some message from our parent process, handle it and send back the result.
"""
import sys
args = self._read()
try:
if not isinstance(args, tuple): raise TypeError("expected tuple but got %r" % args)
if len(args) < 1: raise Exception("need multiple args (cmd, ...)")
res = self.handle_cmd(*args)
except Exception as e:
print("CRNN SprintControl[pid %i] PythonControl handle_next exception" % (os.getpid(),))
sys.excepthook(*sys.exc_info())
self._send(("exception", str(e)))
else:
assert isinstance(res, tuple)
self._send(("ok",) + res)
def run_control_loop(self, callback, **kwargs):
"""
Called by Sprint when we are in PythonControl run_control_loop mode.
Also called by us via self.run_threaded_control_loop().
"""
print("CRNN SprintControl[pid %i] PythonControl run_control_loop: %r, %r" % (os.getpid(), callback, kwargs))
print("CRNN SprintControl[pid %i] PythonControl run_control_loop control: %r" % (os.getpid(), callback("version")))
self.callback = callback
with self.cond:
assert not self.control_loop_started
self.control_loop_started = True
self.cond.notifyAll()
try:
while True:
self.handle_next()
finally:
with self.cond:
self.control_loop_exited = True
self.cond.notifyAll()
def exit(self, **kwargs):
"""
Called by Sprint.
"""
print("CRNN SprintControl[pid %i] PythonControl exit: %r" % (os.getpid(), kwargs))
def check_control_loop_running(self):
if self.control_loop_started:
print("CRNN SprintControl[pid %i] PythonControl check_control_loop_running: already running" % (os.getpid(),))
return
self.run_threaded_control_loop()
def run_threaded_control_loop(self):
print("CRNN SprintControl[pid %i] PythonControl run_threaded_control_loop" % (os.getpid(),))
from threading import Thread
def control_loop():
rnn.initBetterExchook()
self.run_control_loop(self.own_threaded_callback)
t = Thread(target=control_loop, name="SprintControl.PythonControl.threaded_control_loop")
t.daemon = True
t.start()
while True:
with self.cond:
if self.control_loop_started: return
assert t.isAlive()
self.cond.wait(timeout=1)
def own_threaded_callback(self, cmd, *args):
"""
This is used if we run our own control loop via run_threaded_control_loop.
"""
func = getattr(self, "own_tcb_%s" % cmd)
return func(*args)
def own_tcb_version(self):
return "<version>CRNN.own_threaded_callback</version>"
def own_tcb_get_loss_and_error_signal(self, seg_name, seg_len, posteriors):
# Wait until we get the loss and error signal.
while True:
with self.cond:
if self.loss is not None and self.error_signal is not None:
return self.loss, self.error_signal
self.cond.wait(timeout=1)
def init_segment(self, segment_name):
"""
Called by Sprint PythonControl in FeedForwardTrainer/SegmentwiseNnTrainer.
"""
if Verbose: print("CRNN SprintControl[pid %i] init_segment %s" % (os.getpid(), segment_name))
with self.cond:
assert self.seg_name == segment_name
self.notified_for_segment = True
self.cond.notifyAll()
def notify_segment_loss(self, segment_name, loss):
"""
Called by Sprint PythonControl in FeedForwardTrainer/SegmentwiseNnTrainer.
"""
if Verbose: print("CRNN SprintControl[pid %i] notify_segment_loss %s %s" % (os.getpid(), segment_name, loss))
self.set_current_seg_loss(seg_name=segment_name, loss=loss)
def get_current_seg_posteriors(self, seg_len):
"""
:param int seg_len: just for double checking, the length of the current segment
:return: matrix (time,label)
"""
with self.cond:
assert self.seg_len == seg_len
assert self.posteriors.shape[0] == seg_len
self.asked_for_posteriors = True
self.cond.notifyAll()
return self.posteriors
def set_current_seg_error_signal(self, seg_len, error_signal):
"""
:param int seg_len: just for double checking, the length of the current segment
:param error_signal: matrix (time,label)
"""
with self.cond:
assert self.seg_len == seg_len
assert error_signal.ndim == 2
assert error_signal.shape[0] == seg_len
self.error_signal = error_signal
self.cond.notifyAll()
def set_current_seg_loss(self, seg_name, loss):
"""
:param str|None seg_name: just for double checking, the name of the current segment. might be None
:param float loss: the loss of the current seg
"""
with self.cond:
if seg_name:
assert self.seg_name == seg_name
self.loss = loss
self.cond.notifyAll()
def _default_skipped_loss(self):
return float("inf")
def _default_skipped_error_signal(self, posteriors):
return numpy.zeros_like(posteriors)
def _skip_segment_loss_and_error(self):
with self.cond:
assert self.posteriors is not None
if self.loss is None:
self.loss = self._default_skipped_loss()
if self.error_signal is None:
self.error_signal = self._default_skipped_error_signal(self.posteriors)
self.cond.notifyAll()
def _wait_for_control_loop_error_signal(self):
while True:
with self.cond:
if self.control_thread__have_new_error_signal or self.control_thread__have_new_seg:
break
if self.control_loop_exited:
break
if self.loss is None or self.error_signal is None:
break
if Verbose: print("CRNN SprintControl[pid %i] getSegmentList: wait for control loop to handle error signal" % (os.getpid(),))
self.cond.wait(timeout=1)
def segment_list_iterator(self):
with self.cond:
assert self.control_loop_started
while True: # outer loop
# wait until we get new segment
seg_name = None
while True:
with self.cond:
if self.control_thread__have_new_seg:
assert self.seg_name
seg_name = self.seg_name
self.control_thread__have_new_seg = False
break
if self.control_loop_exited:
return # no more segments
self.cond.wait(timeout=1)
# We got a new segment name from the parent CRNN process (via self.handle_cmd_get_loss_and_error_signal()).
# We wait in this segment because we wait to get the error signal from Sprint (via SprintNnPythonLayer.backpropagate()).
# Sprint waits currently for us to get the new segment (in the PythonSegmentOrder code).
# Once it gets it, it will call SprintNnPythonLayer.forward(), then calculate the loss and error signal
# and then call SprintNnPythonLayer.backpropagate().
if Verbose: print("CRNN SprintControl[pid %i] getSegmentList, yield %r" % (os.getpid(), seg_name))
yield seg_name
# We might need to wait for the control loop thread.
self._wait_for_control_loop_error_signal()
# When we are back here, Sprint asks for the next segment.
# It means that is has finished any processing with this segment.
with self.cond:
# See self.handle_cmd_get_loss_and_error_signal().
# We are still stuck in there in the other thread, if not self.have_new_error_signal.
# Maybe the PythonLayer was not used?
# Or Sprint could not calculate the criterion for this segment (bad lattice or so).
if not (self.control_thread__have_new_error_signal or self.control_thread__have_new_seg):
print("CRNN SprintControl[pid %i] getSegmentList, no error signal, skip segment: %s" % (os.getpid(), seg_name))
if Verbose:
# Print Sprint stacktrace.
import signal
os.kill(os.getpid(), signal.SIGUSR1)
if not self.notified_for_segment:
print("CRNN SprintControl[pid %i] getSegmentList: Do you use PythonControl in the Sprint trainer? Got no segment notification." % (os.getpid(),))
if not self.asked_for_posteriors:
print("CRNN SprintControl[pid %i] getSegmentList: Do you use PythonLayer in Sprint? Did not get asked for posteriors." % (os.getpid(),))
self._skip_segment_loss_and_error()
self._wait_for_control_loop_error_signal()