forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecurrentTransform.py
1136 lines (1016 loc) · 52 KB
/
RecurrentTransform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from math import sqrt, pi
import theano
import theano.tensor as T
import theano.sandbox.cuda as cuda
import numpy
from MultiBatchBeam import multi_batch_beam
from ActivationFunctions import elu
from theano.ifelse import ifelse
class RecurrentTransformBase(object):
name = None
def __init__(self, force_gpu=False, layer=None, for_custom=False):
"""
:type layer: NetworkRecurrentLayer.RecurrentUnitLayer
:param bool for_custom: When used with LSTMC + LSTMCustomOp, there are two instances of this class:
One via the network initialization as part of the layer (for_custom == False)
and another one via CustomLSTMFunctions (for_custom == True).
The symbolic vars will look different. See self.create_vars_for_custom().
"""
self.force_gpu = force_gpu
if force_gpu:
self.tt = cuda
else:
self.tt = T
self.layer = layer
self.input_vars = {} # used as non_sequences for theano.scan(), i.e. as input for the step() function
self.state_vars = {} # updated in each step()
self.state_vars_initial = {}
self.custom_vars = {}
self.for_custom = for_custom
if for_custom:
self.create_vars_for_custom()
else:
transforms_by_id[id(self)] = self
self.create_vars()
def copy_for_custom(self, force_gpu=True):
"""
:returns a new instance of this class for LSTMCustomOp
"""
return self.__class__(force_gpu=force_gpu, for_custom=True, layer=self.layer)
def _create_var_for_custom(self, base_var):
var = self._create_symbolic_var(base_var)
setattr(self, var.name, var)
return var
def _create_symbolic_var(self, base_var):
if self.force_gpu:
base_type_class = cuda.CudaNdarrayType
else:
base_type_class = T.TensorType
dtype = base_var.dtype
ndim = base_var.ndim
type_inst = base_type_class(dtype=dtype, broadcastable=(False,) * ndim)
name = base_var.name
var = type_inst(name)
return var
def create_vars_for_custom(self):
"""
Called via CustomLSTMFunctions.
"""
assert self.for_custom
self.y_p = self.tt.fmatrix("y_p")
layer_transform_instance = self.layer.recurrent_transform # this is a different instance
assert isinstance(layer_transform_instance, RecurrentTransformBase)
assert layer_transform_instance.layer is self.layer
for k, v in layer_transform_instance.custom_vars.items():
assert getattr(layer_transform_instance, k) is v
assert v.name == k
self.custom_vars[k] = self._create_var_for_custom(v)
self.state_vars_initial = None # must not be used in custom op. we will get that from outside
for k, v in layer_transform_instance.state_vars.items():
assert getattr(layer_transform_instance, k) is v
assert v.name == k
self.state_vars[k] = self._create_var_for_custom(v)
def init_vars(self):
pass
def create_vars(self):
"""
Called for regular theano.scan().
"""
pass
def add_param(self, v, name = None, **kwargs):
if name: v.name = name
assert v.name
if not self.for_custom:
self.layer.add_param(v, v.name + "_" + self.name,**kwargs)
self.add_var(v)
return v
def add_input(self, v, name=None):
if name: v.name = name
assert v.name, "missing name for input"
self.input_vars[v.name] = v
self.add_var(v)
return v
def add_state_var(self, initial_value, name=None):
if name: initial_value.name = name
assert initial_value.name
sym_var = self._create_symbolic_var(initial_value)
self.state_vars_initial[initial_value.name] = initial_value
self.state_vars[initial_value.name] = sym_var
return sym_var
def add_var(self, v, name=None):
if name: v.name = name
assert v.name
self.custom_vars[v.name] = v
return v
def get_sorted_non_sequence_inputs(self):
return [v for (k, v) in sorted(self.input_vars.items())]
def get_sorted_custom_vars(self):
return [v for (k, v) in sorted(self.custom_vars.items())]
def get_sorted_state_vars(self):
return [v for (k, v) in sorted(self.state_vars.items())]
def get_sorted_state_vars_initial(self):
return [v for (k, v) in sorted(self.state_vars_initial.items())]
def set_sorted_state_vars(self, state_vars):
assert len(state_vars) == len(self.state_vars)
for (k, v), v_new in zip(sorted(self.state_vars.items()), state_vars):
assert getattr(self, k) is v
assert v.name == k
v_new.name = k
self.state_vars[k] = v_new
setattr(self, k, v_new)
def get_state_vars_seq(self, state_var):
assert state_var.name in self.state_vars
idx = sorted(self.state_vars.keys()).index(state_var.name)
return self.layer.unit.recurrent_transform_state_var_seqs[idx]
def step(self, y_p):
"""
:param theano.Variable y_p: output of last time-frame. 2d (batch,dim)
:return: z_re, updates
:rtype: (theano.Variable, dict[theano.Variable, theano.Variable])
"""
raise NotImplementedError
def cost(self):
"""
:rtype: theano.Variable | None
"""
return None
class AttentionTest(RecurrentTransformBase):
name = "test"
def create_vars(self):
n_out = self.layer.attrs['n_out']
n_in = sum([e.attrs['n_out'] for e in self.layer.base])
self.W_att_in = self.add_param(self.layer.create_random_uniform_weights(n=n_out, m=n_in, name="W_att_in"))
def step(self, y_p):
z_re = T.dot(y_p, self.W_att_in)
return z_re, {}
class DummyTransform(RecurrentTransformBase):
name = "none"
def step(self, y_p):
return T.zeros((y_p.shape[0],y_p.shape[1]*4),dtype='float32'), {}
class DynamicTransform(RecurrentTransformBase):
name = "rnn"
def create_vars(self):
self.W_re = self.add_var(self.layer.W_re, name="W_re")
def step(self, y_p):
return T.dot(y_p,self.W_re), {}
class BatchNormTransform(RecurrentTransformBase):
name = "batch_norm"
def create_vars(self):
self.W_re = self.add_var(self.layer.W_re, name="W_re")
dim = self.layer.unit.n_in
self.sample_mean = self.add_param(theano.shared(numpy.zeros((dim,), 'float32')), "sample_mean")
self.gamma = self.add_param(self.layer.shared(numpy.zeros((dim,), 'float32') + numpy.float32(0.1), "gamma"))
#self.beta = self.add_param(self.layer.shared(numpy.zeros((dim,), 'float32'), "beta"))
def batch_norm(self, h, use_shift=True, use_std=True, use_sample=0.0):
x = h
mean = T.mean(x, axis=0)
std = T.std(x, axis=0)
sample_std = T.sqrt(T.mean((x - self.sample_mean) ** 2, axis=0))
if not self.layer.train_flag:
use_sample = 1.0
mean = T.constant(1. - use_sample, 'float32') * mean + T.constant(use_sample, 'float32') * self.sample_mean
std = T.constant(1. - use_sample, 'float32') * std + T.constant(use_sample, 'float32') * sample_std
mean = mean.dimshuffle('x', 0).repeat(h.shape[0], axis=0)
std = std.dimshuffle('x', 0).repeat(h.shape[0], axis=0)
bn = (h - mean) #/ (std + numpy.float32(1e-10))
if use_std:
bn *= self.gamma.dimshuffle('x', 0).repeat(h.shape[0], axis=0)
#if use_shift:
# bn += self.beta
return bn
def step(self, y_p):
#return T.dot(y_p,self.W_re), {}
return self.batch_norm(T.dot(y_p,self.W_re)), {}
class LM(RecurrentTransformBase):
name = "lm"
def create_vars(self):
self.W_lm_in = self.add_var(self.layer.W_lm_in, name="W_lm_in")
self.W_lm_out = self.add_var(self.layer.W_lm_out, name="W_lm_out")
self.lmmask = self.add_var(self.layer.lmmask, "lmmask")
self.t = self.add_state_var(T.zeros((1,), dtype="float32"), name="t")
y = self.layer.y_in[self.layer.attrs['target']].flatten()
if self.layer.attrs['droplm'] < 1.0 and (self.layer.train_flag or self.layer.attrs['force_lm']):
eos = T.unbroadcast(self.W_lm_out[0].dimshuffle('x','x',0),1).repeat(self.layer.index.shape[1],axis=1)
if self.layer.attrs['direction'] == 1:
y_t = self.W_lm_out[y].reshape((self.layer.index.shape[0],self.layer.index.shape[1],self.layer.unit.n_in))[:-1] # (T-1)BD
self.cls = T.concatenate([eos, y_t], axis=0)
else:
y_t = self.W_lm_out[y].reshape((self.layer.index.shape[0],self.layer.index.shape[1],self.layer.unit.n_in))[1:] # (T-1)BD
self.cls = T.concatenate([eos,y_t[::-1]], axis=0)
self.add_input(self.cls, 'cls')
def step(self, y_p):
result = 0
updates = {}
p_re = T.nnet.softmax(T.dot(y_p, self.W_lm_in))
if self.layer.attrs['droplm'] < 1.0 and (self.layer.train_flag or self.layer.attrs['force_lm']):
mask = self.lmmask[T.cast(self.t[0],'int32')]
if self.layer.attrs['attention_lm'] == "hard":
result += self.W_lm_out[T.argmax(p_re, axis=1)] * (1. - mask) + self.cls[T.cast(self.t[0],'int32')] * mask
else:
result += T.dot(p_re,self.W_lm_out) * (1. - mask) + self.cls[T.cast(self.t[0],'int32')] * mask
else:
if self.layer.attrs['attention_lm'] == "hard":
result += self.W_lm_out[T.argmax(p_re, axis=1)]
else:
result += T.dot(p_re,self.W_lm_out)
updates[self.t] = self.t + 1
return result, updates
class AttentionBase(RecurrentTransformBase):
base=None
name = "attention_base"
@property
def attrs(self):
return { "_".join(k.split("_")[1:]) : self.layer.attrs[k].decode('utf-8') if isinstance(self.layer.attrs[k],bytes) else self.layer.attrs[k] for k in self.layer.attrs.keys() if k.startswith("attention_") }
def create_vars(self):
if self.base is None:
self.base = self.layer.base
self.n = self.add_state_var(T.zeros((self.layer.index.shape[1],), 'float32'), 'n')
self.bound = self.add_input(T.cast(T.sum(self.layer.index,axis=0), 'float32'), 'bound')
if self.attrs['norm'] == 'RNN':
n_tmp = self.attrs['template']
l = sqrt(6.) / sqrt(2 * n_tmp)
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(n_tmp, n_tmp*4)), dtype=theano.config.floatX)
self.N_re = self.add_param(self.layer.shared(value=values, borrow=True, name = "N_re"))
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(n_tmp, 1)), dtype=theano.config.floatX)
self.N_out = self.add_param(self.layer.shared(value=values, borrow=True, name = "N_out"))
if self.attrs['distance'] == 'rnn':
n_tmp = self.attrs['template']
l = sqrt(6.) / sqrt(2 * n_tmp)
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(n_tmp, n_tmp)), dtype=theano.config.floatX)
self.A_re = self.add_param(self.layer.shared(value=values, borrow=True, name = "A_re"))
if self.attrs['distance'] == 'transpose':
n_tmp = self.attrs['template']
l = sqrt(6.) / sqrt(2 * n_tmp)
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(n_tmp,)), dtype=theano.config.floatX)
self.W_T = self.add_param(self.layer.shared(value=values, name="W_T"))
if self.attrs['lm'] != "none":
self.W_lm_in = self.add_var(self.layer.W_lm_in, name="W_lm_in")
self.b_lm_in = self.add_var(self.layer.b_lm_in, name="b_lm_in")
self.W_lm_out = self.add_var(self.layer.W_lm_out, name="W_lm_out")
self.drop_mask = self.add_var(self.layer.lmmask, "drop_mask")
y = self.layer.y_in[self.layer.attrs['target']].flatten()
nil = T.unbroadcast(self.W_lm_out[0].dimshuffle('x','x',0),1).repeat(self.layer.index.shape[1],axis=1)
if self.layer.attrs['direction'] == 1:
y_t = self.W_lm_out[y].reshape((self.layer.index.shape[0],self.layer.index.shape[1],self.layer.unit.n_in))[:-1] # (T-1)BD
self.cls = T.concatenate([nil, y_t], axis=0)
else:
y_t = self.W_lm_out[y].reshape((self.layer.index.shape[0],self.layer.index.shape[1],self.layer.unit.n_in))[1:] # (T-1)BD
self.cls = T.concatenate([nil,y_t[::-1]], axis=0)
self.add_input(self.cls, 'cls')
def default_updates(self):
self.base = self.layer.base
self.glimpses = [ [] ] * len(self.base)
self.n_glm = max(self.attrs['glimpse'],1)
return { self.n : self.n + numpy.float32(1) } #T.constant(1,'float32') }
def step(self, y_p):
result = 0
self.glimpses = []
updates = self.default_updates()
if self.attrs['lm'] != "none":
p_re = T.nnet.softmax(T.dot(y_p, self.W_lm_in) + self.b_lm_in)
if self.layer.attrs['droplm'] < 1.0:
mask = self.drop_mask[T.cast(self.n[0],'int32')]
if self.attrs['lm'] == "hard":
result += self.W_lm_out[T.argmax(p_re, axis=1)] * (1. - mask) + self.cls[T.cast(self.n[0],'int32')] * mask
else:
result += T.dot(p_re,self.W_lm_out) * (1. - mask) + self.cls[T.cast(self.n[0],'int32')] * mask
else:
if self.attrs['lm'] == "hard":
result += self.W_lm_out[T.argmax(p_re, axis=1)]
else:
result += T.dot(p_re,self.W_lm_out)
inp, upd = self.attend(y_p)
updates.update(upd)
return result + inp, updates
def distance(self, C, H):
dist = self.attrs['distance']
if H.ndim == 2:
H = H.dimshuffle('x', 0, 1).repeat(C.shape[0],axis=0)
assert H.ndim == 3
if dist == 'l2':
dst = T.sqrt(T.sum((C - H) ** 2, axis=2))
elif dist == 'logl2':
dst = T.sqrt(T.sum((T.log((C + numpy.float32(1))/numpy.float32(2)) - T.log((H + numpy.float32(1))/numpy.float32(2))) ** 2, axis=2))
elif dist == 'sqr':
dst = T.mean((C - H) ** 2, axis=2)
elif dist == 'dot':
dst = T.sum(C * H, axis=2)
elif dist == 'l1':
dst = T.sum(T.abs_(C - H), axis=2)
elif dist == 'cos': # use with template size > 32
J = H / (T.sqrt(T.sum(H**2,axis=2,keepdims=True)) + T.constant(1e-5, 'float32'))
K = C / (T.sqrt(T.sum(C**2,axis=2,keepdims=True)) + T.constant(1e-5, 'float32'))
dst = T.sum(K * J, axis=2)
elif dist == 'rnn':
inp, _ = theano.scan(lambda x,p,W:elu(x+T.dot(p,W)), sequences = C, outputs_info = [H[0]], non_sequences=[self.A_re])
dst = inp[-1]
elif dist == 'transpose':
dst = T.sum(self.W_T.dimshuffle('x','x',0).repeat(C.shape[0],axis=0).repeat(C.shape[1],axis=1) * T.tanh(C + H),axis=2)
else:
raise NotImplementedError()
return dst #/ T.cast(H.shape[1],'float32')
def beam(self, X, beam_idx=None):
if not beam_idx:
beam_idx = X.beam_idx
input_shape = [X.shape[0] * X.shape[1]]
if X.ndim == 3:
input_shape.append(X.shape[2])
Y = X.reshape(input_shape)[beam_idx].reshape((self.attrs['beam'],X.shape[1]))
Y.beam_idx = beam_idx
return Y
def align(self, w_i, Q):
dst = -T.log(w_i)
inf = T.zeros_like(Q[0, 0]) + T.cast(1e10, 'float32') * T.gt(self.n, 0)
big = T.cast(1e10, 'float32')
n0 = T.eq(T.max(self.n), 0)
D = -T.log(w_i)
def dtw(i, q_p, b_p, Q, D, inf):
i0 = T.eq(i, 0)
# inf = T.cast(1e10,'float32') * T.cast(T.switch(T.eq(self.n,0), T.switch(T.eq(i,0), 0, 1), 1), 'float32')
penalty = T.switch(T.and_(T.neg(n0), i0), big, T.constant(0.0, 'float32'))
loop = T.constant(0.0, 'float32') + q_p
forward = T.constant(0.0, 'float32') + T.switch(T.or_(n0, i0), 0, Q[i - 1])
opt = T.stack([loop, forward])
k_out = T.cast(T.argmin(opt, axis=0), 'int32')
return opt[k_out, T.arange(opt.shape[1])] + D[i] + penalty, k_out
output, _ = theano.scan(dtw, sequences=[T.arange(dst.shape[0], dtype='int32')], non_sequences=[Q, D, inf],
outputs_info=[T.zeros((dst.shape[1],), 'float32'), T.zeros((dst.shape[1],), 'int32')])
return output[0], T.cast(output[1],'float32')
def softmax(self, D, I):
D = D * T.constant(self.attrs['sharpening'], 'float32')
if self.attrs['norm'] == 'exp':
D = D - D.mean(axis=0,keepdims=True) * I
E = T.exp(-D)
E = E / T.maximum(T.sum(E,axis=0,keepdims=True),T.constant(1e-20,'float32'))
elif self.attrs['norm'] == 'linear':
E = D * I
E = numpy.float32(1) - E / T.maximum(T.sum(E,axis=0,keepdims=True),T.constant(1e-20,'float32'))
elif self.attrs['norm'] == 'sigmoid':
E = (numpy.float32(1) - T.tanh(D)**2) * I
elif self.attrs['norm'] == 'lstm':
n_out = self.attrs['template']
def lstm(z, i_t, s_p, h_p):
z += T.dot(h_p, self.N_re)
i = T.outer(i_t, T.alloc(numpy.cast['int8'](1), n_out))
ingate = T.nnet.sigmoid(z[:,n_out: 2 * n_out])
forgetgate = T.nnet.sigmoid(z[:,2 * n_out:3 * n_out])
outgate = T.nnet.sigmoid(z[:,3 * n_out:])
input = T.tanh(z[:,:n_out])
s_t = input * ingate + s_p * forgetgate
h_t = T.tanh(s_t) * outgate
return theano.gradient.grad_clip(s_t * i, -50, 50), h_t * i
E, _ = theano.scan(lstm, sequences=[D,I], outputs_info=[T.zeros((n_out,), 'float32'), T.zeros((n_out,), 'int32')])
E = T.nnet.sigmoid(T.dot(E,self.N_out))
else:
raise NotImplementedError()
if self.attrs['nbest'] > 1:
opt = T.minimum(self.attrs['nbest'], E.shape[0])
score = (T.sort(E, axis=0)[-opt]).dimshuffle('x',0).repeat(E.shape[0],axis=0)
E = T.switch(T.lt(E,score), T.zeros_like(E), E)
return E
class AttentionList(AttentionBase):
"""
attention over list of bases
"""
name = "attention_list"
def init(self, i):
if self.attrs['beam'] > 0:
img = 0
for b in range(self.attrs['beam']):
img += T.eye(self.custom_vars['C_%d' % i].shape[0],self.custom_vars['C_%d' % i].shape[0],b,dtype='float32')
self.__setattr__("P_%d" % i, self.add_input(img, 'P_%d' %i))
self.__setattr__("B_%d" % i, self.custom_vars['B_%d' % i])
if self.attrs['memory'] > 0:
self.__setattr__("M_%d" % i, self.state_vars['M_%d' % i])
self.__setattr__("W_mem_in_%d" % i, self.custom_vars['W_mem_in_%d' % i])
self.__setattr__("W_mem_write_%d" % i, self.custom_vars['W_mem_write_%d' % i])
self.__setattr__("C_%d" % i, self.custom_vars['C_%d' % i])
self.__setattr__("I_%d" % i, self.custom_vars['I_%d' % i])
self.__setattr__("W_att_re_%d" % i, self.custom_vars['W_att_re_%d' % i])
self.__setattr__("b_att_re_%d" % i, self.custom_vars['b_att_re_%d' % i])
self.__setattr__("W_att_in_%d" % i, self.custom_vars['W_att_in_%d' % i])
self.__setattr__("b_att_in_%d" % i, self.custom_vars['b_att_in_%d' % i])
if 'b_att_bs_%d' % i in self.custom_vars.keys():
self.__setattr__("W_att_bs_%d" % i, self.custom_vars['W_att_bs_%d' % i])
self.__setattr__("b_att_bs_%d" % i, self.custom_vars['b_att_bs_%d' % i])
shape = self.layer.base[i].output_index().shape
if self.attrs['store']:
self.__setattr__("att_%d" % i, self.add_state_var(T.zeros(shape,'float32'), "att_%d" % i))
if self.attrs['smooth']:
self.__setattr__("datt_%d" % i, self.add_state_var(T.zeros(shape, 'float32'), "datt_%d" % i))
if self.attrs['momentum'] == "conv1d":
self.__setattr__("F_%d" % i, self.custom_vars['F_%d' % i])
self.__setattr__("U_%d" % i, self.custom_vars['U_%d' % i])
elif self.attrs['momentum'] == "conv2d":
self.__setattr__("F_%d" % i, self.custom_vars['F_%d' % i])
self.__setattr__("U_%d" % i, self.custom_vars['U_%d' % i])
elif self.attrs['momentum'] == "mono":
self.__setattr__("D_in_%d" % i, self.custom_vars['D_in_%d' % i])
self.__setattr__("D_out_%d" % i, self.custom_vars['D_out_%d' % i])
self.__setattr__("Db_out_%d" % i, self.custom_vars['Db_out_%d' % i])
if self.attrs['loss']:
self.__setattr__("iatt_%d" % i, self.custom_vars['iatt_%d' % i])
self.__setattr__("catt_%d" % i, self.add_state_var(T.zeros((shape[1],), 'float32'), "catt_%d" % i))
def create_bias(self, n, name, i=-1):
if i >= 0: name += '_%d' % i
values = numpy.zeros((n,), dtype=theano.config.floatX)
return self.add_param(self.layer.shared(value=values, borrow=True, name=name), name=name)
def create_weights(self, n, m, name, i=-1):
if i >= 0: name += '_%d' % i
l = sqrt(6.) / sqrt(n + m)
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(n, m)), dtype=theano.config.floatX)
return self.add_param(self.layer.shared(value=values, borrow=True, name=name), name=name)
def create_vars(self):
super(AttentionList, self).create_vars()
n_tmp = self.attrs['template']
direction = self.layer.attrs['direction']
#self.W_re = self.add_var(self.layer.W_re, name="W_re")
for i,e in enumerate(self.base):
# base output
B = e.output[::direction]
self.add_input(B, 'B_%d' % i)
# mapping from base output to template size
self.create_weights(self.layer.attrs['n_out'], n_tmp, "W_att_re", i)
self.create_bias(n_tmp, "b_att_re", i)
if e.attrs['n_out'] == n_tmp:
self.add_input(e.output[::direction], 'C_%d' % i)
else:
W_att_bs = self.create_weights(e.attrs['n_out'], n_tmp, "W_att_bs", i)
b_att_bs = self.create_bias(n_tmp, "b_att_bs", i)
h_att = T.tanh(T.dot(B, W_att_bs) + b_att_bs)
if self.attrs['bn']:
h_att = self.layer.batch_norm(h_att, n_tmp, index = e.output_index())
else:
i_f = T.cast(e.output_index()[::self.layer.attrs['direction']],'float32').dimshuffle(0,1,'x').repeat(h_att.shape[2],axis=2)
h_att = h_att - (h_att * i_f).sum(axis=0,keepdims=True) / T.sum(i_f,axis=0,keepdims=True)
if self.attrs['memory'] > 0:
self.add_state_var(T.zeros((self.attrs['memory'], n_tmp), 'float32'), 'M_%d' % i)
self.create_weights(n_tmp, self.layer.unit.n_in, "W_mem_in", i)
self.create_weights(n_tmp, self.attrs['memory'], "W_mem_write", i)
self.add_input(h_att, 'C_%d' % i)
self.add_input(T.cast(self.base[i].output_index()[::direction], 'float32'), 'I_%d' % i)
# mapping from template size to cell input
self.create_weights(e.attrs['n_out'], self.layer.unit.n_in, "W_att_in", i)
self.create_bias(self.layer.unit.n_in, "b_att_in", i)
if self.attrs['momentum'] == 'conv1d':
context = 5
values = numpy.ones((self.attrs['filters'], 1, context, 1), 'float32')
self.add_param(self.layer.shared(value=values, borrow=True, name="F_%d" % i))
l = sqrt(6.) / sqrt(self.layer.attrs['n_out'] + n_tmp + self.layer.unit.n_re)
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(self.attrs['filters'], n_tmp)), dtype=theano.config.floatX)
self.add_param(self.layer.shared(value=values, borrow=True, name="U_%d" % i))
elif self.attrs['momentum'] == 'conv2d':
context = 3
values = numpy.ones((self.attrs['filters'], 1, 2, context), 'float32')
self.add_param(self.layer.shared(value=values, borrow=True, name="F_%d" % i))
l = sqrt(6.) / sqrt(self.attrs['filters'] + 1)
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(self.attrs['filters'], 1)), dtype=theano.config.floatX)
self.add_param(self.layer.shared(value=values, borrow=True, name="U_%d" % i))
elif self.attrs['momentum'] == "mono":
size = 500
l = 0.01
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(1, size)),
dtype=theano.config.floatX)
self.add_param(self.layer.shared(value=values, borrow=True, name="D_in_%d" % i))
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(size, 1)),
dtype=theano.config.floatX)
self.add_param(self.layer.shared(value=values, borrow=True, name="D_out_%d" % i))
self.add_param(self.layer.shared(value=numpy.zeros((1,),'float32'), borrow=True, name="Db_out_%d" % i))
elif self.attrs['loss']:
att = e.att - T.arange(e.att.shape[1]) * e.sources[0].index.shape[0] # NB
self.add_input(T.cast(att,'float32'), 'iatt_%d' % i)
self.init(i)
def item(self, name, i):
key = "%s_%d" % (name,i)
return self.custom_vars[key] if key in self.custom_vars.keys() else self.state_vars[key]
def get(self, y_p, i, g):
W_att_re = self.item("W_att_re", i)
b_att_re = self.item("b_att_re", i)
B = self.item("B", i)
C = self.item("C", i)
I = self.item("I", i)
beam_size = T.minimum(numpy.int32(abs(self.attrs['beam'])), C.shape[0])
loc = T.cast(T.maximum(T.minimum(T.sum(I,axis=0) * self.n / self.bound - beam_size / 2, T.sum(I,axis=0) - beam_size), 0),'int32')
if self.attrs['beam'] > 0:
beam_idx = (self.custom_vars[('P_%d' % i)][loc].dimshuffle(1,0).flatten() > 0).nonzero()
I = I.reshape((I.shape[0]*I.shape[1],))[beam_idx].reshape((beam_size,I.shape[1]))
C = C.reshape((C.shape[0]*C.shape[1],C.shape[2]))[beam_idx].reshape((beam_size,C.shape[1],C.shape[2]))
B = B.reshape((B.shape[0]*B.shape[1],B.shape[2]))[beam_idx].reshape((beam_size,B.shape[1],B.shape[2]))
if self.attrs['template'] != self.layer.unit.n_out:
z_p = T.dot(y_p, W_att_re) + b_att_re
else:
z_p = y_p
if self.attrs['momentum'] == 'conv1d':
from theano.tensor.nnet import conv
att = self.item('att', i)
F = self.item("F", i)
v = T.dot(T.sum(conv.conv2d(border_mode='full',
input=att.dimshuffle(1, 'x', 0, 'x'),
filters=F).dimshuffle(2,3,0,1),axis=1)[F.shape[2]/2:-F.shape[2]/2+1],self.item("U",i))
v = I * v / v.sum(axis=0,keepdims=True)
z_p += T.sum(C * v,axis=0)
if g > 0:
z_p += self.glimpses[i][-1]
h_p = T.tanh(z_p)
return B, C, I, h_p, self.item("W_att_in", i), self.item("b_att_in", i)
def attend(self, y_p):
inp, updates = 0, {}
for i in range(len(self.base)):
for g in range(self.n_glm):
B, C, I, H, W_att_in, b_att_in = self.get(y_p, i, g)
z_i = self.distance(C, H)
w_i = self.softmax(z_i, I)
if self.attrs['momentum'] == 'conv2d':
F = self.item('F',i)
context = F.shape[3]
padding = T.zeros((2,context/2,C.shape[1]),'float32')
att = T.concatenate([padding, T.stack([self.item('att',i), w_i]), padding],axis=1) # 2TB
v_i = T.nnet.sigmoid(T.dot(T.nnet.conv2d(border_mode='valid',
input=att.dimshuffle(2,'x',0,1), # B12T
filters=F).dimshuffle(3,0,2,1),self.item('U',i)).reshape((C.shape[0],C.shape[1])))
w_i *= v_i
w_i = w_i / w_i.sum(axis=0, keepdims=True)
elif self.attrs['momentum'] == 'mono': # gating function
idx = T.arange(z_i.shape[0],dtype='float32').dimshuffle(0,'x').repeat(w_i.shape[1],axis=1) # TB
d_i = idx - T.sum(self.item('att', i) * idx,axis=0,keepdims=True)
f_i = T.nnet.sigmoid(T.dot(T.tanh(T.dot(d_i.dimshuffle(0,1,'x'), self.item('D_in', i))), self.item("D_out", i)) + self.item('Db_out',i))[:,:,0]
w_i = T.exp(-z_i) * f_i * I
w_i = w_i / w_i.sum(axis=0, keepdims=True)
self.glimpses[i].append(T.sum(C * w_i.dimshuffle(0,1,'x').repeat(C.shape[2],axis=2),axis=0))
if self.attrs['smooth']:
updates[self.state_vars['datt_%d' % i]] = w_i - self.state_vars['att_%d' % i]
if self.attrs['store']:
updates[self.state_vars['att_%d' % i]] = theano.gradient.disconnected_grad(w_i)
if self.attrs['memory'] > 0:
M = self.item('M',i)
z_r = self.distance(M, H)
w_m = self.softmax(z_r, T.ones_like(M[0]))
inp += T.dot(T.sum(w_m*M,axis=0), self.item('W_mem_in',i))
v_m = T.nnet.sigmoid(T.dot(H, self.item('W_mem_write', i))).dimshuffle('x',0, 1).repeat(M.shape[0],axis=0)
mem = H.dimshuffle('x',0,1).repeat(self.attrs['memory'],axis=0)
updates[self.state_vars['M_%d' % i]] = T.sum((numpy.float32(1) - v_m) * M.dimshuffle(0,'x',1).repeat(v_m.shape[1],axis=1) + v_m * mem,axis=1)
if self.attrs['accumulator'] == 'rnn':
def rnn(x_t, w_t, c_p):
c = x_t * w_t + c_p * (numpy.float32(1.) - w_t)
return T.switch(T.ge(c, 0), c, T.exp(c) - 1)
zT, _ = theano.scan(rnn, sequences=[B,w_i.dimshuffle(0, 1, 'x').repeat(B.shape[2], axis=2)],
outputs_info = [T.zeros_like(B[0])])
z = zT[-1]
else:
if self.attrs['nbest'] == 1:
z = B[T.argmax(w_i,axis=0),T.arange(w_i.shape[1])]
else:
z = T.sum(B * w_i.dimshuffle(0, 1, 'x').repeat(B.shape[2], axis=2), axis=0)
if self.attrs['loss']:
updates[self.state_vars['catt_%d' % i]] = -T.sum(T.log(w_i[T.cast(self.item('iatt', i),'int32')[T.cast(self.n,'int32')],T.arange(w_i.shape[1],dtype='int32')]),axis=0)
inp += T.dot(z, W_att_in) + b_att_in
ifelse(T.eq(T.mod(self.n[0],self.attrs['ndec']),0), inp, T.zeros((self.n.shape[0],self.layer.attrs['n_out'] * 4),'float32'))
return inp, updates
def cost(self):
val = 0
if self.attrs['smooth']:
penalty = T.constant(0,'float32')
for i in range(len(self.base)):
penalty += theano.tensor.extra_ops.cumsum(self.get_state_vars_seq(self.state_vars['datt_%d' % i]),axis=0)
val += T.sum(T.maximum(penalty,T.zeros_like(penalty)))
if self.attrs['loss']:
for i in range(len(self.base)):
val += T.sum(self.get_state_vars_seq(self.state_vars['catt_%d' % i]))
return val
class AttentionAlign(AttentionBase):
"""
alignment controlled attention
"""
name = "attention_align"
def create_vars(self):
super(AttentionAlign, self).create_vars()
assert len(self.base) == 1
#assert self.base[0].layer_class.endswith('align')
max_skip = self.base[0].attrs['max_skip']
self.B = self.add_input(self.base[0].output, 'B')
l = sqrt(6.) / sqrt(self.layer.attrs['n_out'] + max_skip)
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l,
size=(self.base[0].attrs['n_out'], self.layer.unit.n_in)),
dtype=theano.config.floatX)
self.W_att_in = self.add_param(self.layer.shared(value=values, borrow=True, name="W_att_in"), name="W_att_in")
self.T_W = self.add_var(self.layer.T_W, name="T_W")
self.T_b = self.add_var(self.layer.T_b, name="T_b")
#y_t = T.dot(self.base[0].attention, T.arange(self.base[0].output.shape[0], dtype='float32')) # NB
#y_t = T.concatenate([T.zeros_like(y_t[:1]), y_t], axis=0) # (N+1)B
#y_t = y_t[1:] - y_t[:-1] # NB
self.y_t = self.add_input(self.layer.y_t, "y_t")
lens = T.sum(self.base[0].index,axis=0,dtype='float32')
self.t = self.add_state_var(lens - numpy.float32(1), "t")
nlens = T.sum(self.layer.index,axis=0,dtype='float32')
self.ns = self.add_state_var(nlens - numpy.float32(1), "ns")
#self.cost_sum = self.add_state_var(T.zeros((1,), 'float32'), "cost_sum")
def attend(self, y_p):
inp, updates = 0, {}
z = T.dot(y_p,self.T_W) + self.T_b
#idx = self.I[self.n[0]]
#y_out = T.cast(self.y_t[self.n[0]],'int32')
#nll, _ = T.nnet.crossentropy_softmax_1hot(x=z[idx], y_idx=y_out[idx])
smooth = T.constant(self.attrs['smooth'], 'float32')
#n = T.cast(self.n[0],'int32')
n = T.cast(self.ns, 'int32')
t = T.dot(T.nnet.softmax(z), T.arange(self.base[0].attrs['max_skip'],dtype='float32')) #+ numpy.float32(1)
#t = T.cast(T.argmax(z,axis=1), 'float32' )
t = smooth * self.y_t[n,T.arange(self.y_t.shape[1]),T.cast(self.t,'int32')] + (numpy.float32(1) - smooth) * t
pos = T.cast(T.ceil(self.t), 'int32')
inp = T.dot(self.B[pos,T.arange(pos.shape[0])], self.W_att_in)
#updates[self.cost_sum] = T.sum(nll,dtype='float32').dimshuffle('x').repeat(1,axis=0)
updates[self.t] = T.maximum(self.t - t, numpy.float32(0))
updates[self.ns] = self.ns - numpy.float32(1)
return inp, updates
class AttentionInverted(AttentionBase):
"""
alignment controlled attention
"""
name = "attention_inverted"
def create_vars(self):
super(AttentionInverted, self).create_vars()
assert len(self.base) == 1
assert self.base[0].layer_class.endswith('align')
align = self.base[0]
dir = -self.layer.attrs['direction']
self.max_skip = numpy.int32(self.layer.base[0].attrs['max_skip'])
p_in = T.concatenate([T.zeros_like(align.p_y_given_x[:self.max_skip]), align.p_y_given_x[::dir]], axis=0)
x_in = T.concatenate([T.zeros_like(align.x_in[:self.max_skip]), align.x_in[::dir]], axis=0)
a_in = T.concatenate([T.zeros_like(align.attention.dimshuffle(2,1,0)[:self.max_skip]),
align.attention.dimshuffle(2,1,0)[::dir]], axis=0)
self.P = self.add_input(p_in, 'P')
self.X = self.add_input(x_in, 'X')
self.A = self.add_input(a_in, 'A')
l = sqrt(6.) / sqrt(self.layer.attrs['n_out'] + self.layer.unit.n_in)
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l,
size=(self.layer.attrs['n_out'], align.n_cls)),
dtype=theano.config.floatX)
self.W_cls = self.add_param(self.layer.shared(value=values, borrow=True, name="W_cls"), name="W_cls")
values = numpy.zeros((align.n_cls,), 'float32')
self.b_cls = self.add_param(self.layer.shared(value=values, borrow=True, name='b_cls'), name='b_cls')
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l,
size=(align.attrs['n_out'], self.layer.unit.n_in)),
dtype=theano.config.floatX)
self.W_in = self.add_param(self.layer.shared(value=values, borrow=True, name="W_in"), name="W_in")
lens = T.sum(self.base[0].index,axis=0,dtype='float32')
self.t = self.add_state_var(lens - numpy.float32(self.max_skip), "t")
self.max_skip = self.add_var(T.zeros((1,),'float32') + numpy.float32(self.max_skip),'max_skip')
nlens = T.sum(self.layer.index,axis=0,dtype='float32')
self.ns = self.add_state_var(nlens - numpy.float32(1), "ns")
def attend(self, y_p):
inp, updates = 0, {}
c = T.nnet.softmax(T.dot(y_p, self.W_cls) + self.b_cls) # BC
n = T.cast(self.ns - numpy.float32(1),'int32')[0]
tau = T.cast(self.t,'int32')[0]
max_skip = T.cast(self.max_skip, 'int32')[0]
#max_skip = numpy.int32(self.layer.base[0].attrs['max_skip'])
#max_skip = 12
p = self.P[tau:tau + max_skip] # MBC
x = self.X[tau:tau + max_skip]
a = self.A[tau:tau + max_skip,T.arange(x.shape[1]),n] # MB
a = self.A[:,T.arange(x.shape[1]),n]
e = T.exp(T.sum(c.dimshuffle('x',0,1).repeat(p.shape[0],axis=0) * p, axis=2)) # MB
e = e / e.sum(axis=0,keepdims=True)
w = a
#e = e.dimshuffle(0,1,'x').repeat(p.shape[2],axis=2)
q = T.exp(p.max(axis=2) * w)
q = q / q.sum(axis=0,keepdims=True)
q = w
from TheanoUtil import print_to_file
#q = print_to_file('q', q)
dt = q.argmax(axis=0) - T.cast(self.t,'int32') #+ max_skip
pos = T.argmax(self.A[:,T.arange(x.shape[1]),n],axis=0)
inp = T.dot(self.X[pos,T.arange(x.shape[1])], self.W_in)
#q = q.dimshuffle(0,1,'x').repeat(x.shape[2],axis=2)
#inp = T.dot(T.sum(x * q, axis=0), self.W_in)
#updates[self.t] = T.maximum(self.t - self.max_skip[0] + T.cast(dt, 'float32'), T.zeros_like(self.t))
n = T.cast(self.ns - numpy.float32(1), 'int32')[0]
updates[self.t] = T.cast(T.argmax(self.A[:,T.arange(x.shape[1]),n],axis=0),'float32')
updates[self.ns] = self.ns - numpy.float32(1)
return inp, updates
class AttentionSegment(AttentionBase):
"""
alignment controlled attention over segments
"""
name = "attention_segment"
def create_bias(self, n, name, i=-1):
if i >= 0: name += '_%d' % i
values = numpy.zeros((n,), dtype=theano.config.floatX)
return self.add_param(self.layer.shared(value=values, borrow=True, name=name), name=name)
def create_weights(self, n, m, name, i=-1):
if i >= 0: name += '_%d' % i
l = sqrt(6.) / sqrt(n + m)
values = numpy.asarray(self.layer.rng.uniform(low=-l, high=l, size=(n, m)), dtype=theano.config.floatX)
return self.add_param(self.layer.shared(value=values, borrow=True, name=name), name=name)
def create_vars(self):
super(AttentionSegment, self).create_vars()
assert len(self.base) == 1
n_tmp = self.attrs['template']
B = self.B = self.add_input(self.base[0].output[::self.layer.attrs['direction']], 'B')
self.W_att_in = self.create_weights(self.base[0].attrs['n_out'], self.layer.unit.n_in, 'W_att_in')
self.b_att_in = self.create_bias(self.layer.unit.n_in, 'b_att_in')
self.epoch = self.add_input(T.cast(self.layer.network.epoch,'float32'),'epoch')
if not self.layer.attrs['n_out'] == n_tmp:
if self.layer.attrs['attention_alnpts']:
self.W_att_re = self.create_weights(self.layer.attrs['n_out'], n_tmp, "W_att_re")
self.b_att_re = self.create_bias(n_tmp, "b_att_re")
self.W_att_dec = self.create_weights(self.layer.attrs['n_out'], n_tmp, "W_att_dec")
self.b_att_dec = self.create_bias(n_tmp, "b_att_dec")
if not self.base[0].attrs['n_out'] == n_tmp:
self.W_att_bs = self.create_weights(self.base[0].attrs['n_out'], n_tmp, "W_att_bs")
self.b_att_bs = self.create_bias(n_tmp, "b_att_bs")
h_att = T.tanh(T.dot(B,self.W_att_bs) + self.b_att_bs)
else:
h_att = B
self.I_dec = self.add_input(T.cast(self.base[0].output_index()[::self.layer.attrs['direction']],'float32'), 'I_dec')
self.i_f = self.add_input(T.cast(self.base[0].output_index()[::self.layer.attrs['direction']],'float32').dimshuffle(0,1,'x').repeat(h_att.shape[2],axis=2),'i_f')
if not self.layer.eval_flag:
self.inv_att = self.add_input(T.cast(self.layer.aligner.attention.dimshuffle(2,1,0)[::self.layer.attrs['direction']].dimshuffle(2,1,0),'float32'),'inv_att')
self.red_ind = self.add_input(T.cast(self.layer.aligner.reduced_index,'float32'),'red_ind')
self.i_f = self.add_input(T.cast(self.base[0].output_index()[::self.layer.attrs['direction']],'float32').dimshuffle(0,1,'x').repeat(h_att.shape[2],axis=2),'i_f')
self.index_att = self.add_input(self.make_index(self.inv_att,self.I_dec),'index_att') #NTB
if not self.base[0].attrs['n_out'] == n_tmp:
h_att = h_att - (h_att * self.i_f).sum(axis=0,keepdims=True) / T.sum(self.i_f,axis=0,keepdims=True)
self.C = self.add_input(h_att, 'C')
else:
self.C = self.add_input(self.base[0].output[::self.layer.attrs['direction']], 'C')
self.E = self.add_input(T.concatenate([e.output[::self.layer.attrs['direction']] for e in self.layer.encoder],axis=2), 'E')
def make_index(self,inv_att,ind):
att = inv_att.argmax(axis=2) #NB
new_ind = T.zeros_like(ind).dimshuffle('x',0,1).repeat(att.shape[0],axis=0).dimshuffle(0,2,1) #NBT
mask = T.arange(ind.shape[0]).dimshuffle('x',0).repeat(att.shape[0]*att.shape[1],axis=0).reshape((att.shape[0],att.shape[1],ind.shape[0])) #NBT
flat_att = att.flatten().dimshuffle(0,'x').repeat(ind.shape[0],axis=1).reshape((att.shape[0],att.shape[1],ind.shape[0])) #NBT
result = T.switch(mask>flat_att,new_ind,numpy.float32(1))
result = T.switch(T.eq(flat_att,0),numpy.float32(0),result).dimshuffle(0,2,1)
return T.cast(result,'float32')
def calc_temperature(self,method="epoch",min_dist=None):
att_epoch = numpy.float32(self.layer.attrs['attention_epoch'])
att_step = numpy.float32(self.layer.attrs['attention_segstep'])
att_offset = numpy.float32(self.layer.attrs['attention_offset'])
att_scale = numpy.float32(self.layer.attrs['attention_scale'])
temperature = T.cast(T.cast(self.epoch/att_epoch,'int32') * att_step + att_offset,'float32')
if method == "epoch":
temperature = T.minimum(temperature,numpy.float32(1.0))
elif method == "min_dist":
assert min_dist is not None
temperature = T.maximum(T.exp(-min_dist),T.minimum(temperature,numpy.float32(1.0)))
elif method == "entropy":
assert min_dist is not None
exp_min_dist = T.exp(att_scale/T.cast(min_dist,'float32'))
temperature = numpy.float32(1) - T.minimum(exp_min_dist,numpy.float32(1.0))
elif method == "entropy_direct":
assert min_dist is not None
exp_min_dist = T.exp(T.cast(min_dist,'float32')*numpy.float32(0.5))
temperature = numpy.float32(1) - T.minimum(exp_min_dist,numpy.float32(1.0))
elif method == "entropy_batch_avg":
assert min_dist is not None
avg_entropy = T.sum(min_dist,dtype='float32')/T.cast(min_dist.shape[0],'float32')
exp_min_dist = T.exp(att_scale/T.cast(avg_entropy,'float32'))
temperature = numpy.float32(1) - T.minimum(exp_min_dist,numpy.float32(1.0))
elif method == "entropy_batch_min":
assert min_dist is not None
min_entropy = T.max(min_dist)
exp_min_dist = T.exp(att_scale/T.cast(min_entropy,'float32'))
temperature = numpy.float32(1) - T.minimum(exp_min_dist,numpy.float32(1.0))
return temperature
def attend(self, y_p):
inp, updates = 0, {}
n = T.cast(self.n[0],'int32')
attend_on_alnpts = self.layer.attrs['attention_alnpts']
att_method = self.layer.attrs['attention_method']
if not attend_on_alnpts:
#if not self.layer.eval_flag:
if self.layer.train_flag:
att_pts = self.inv_att.argmax(axis=2) + T.arange(self.inv_att.shape[1])*self.inv_att.shape[2] #NB
curr_enc_pts = T.cast(att_pts[n],'int32') #B
if self.layer.attrs['n_out'] == self.layer.attrs['attention_template']:
dis_curr = y_p
else:
prev_dec_step = T.dot(y_p,self.W_att_dec) + self.b_att_dec #BD
dis_curr = prev_dec_step
curr_seg_index = T.switch(T.gt(self.index_att[n] - self.index_att[n-1],numpy.float32(0)),numpy.float32(1),numpy.float32(0)) #TB
ind_curr = theano.ifelse.ifelse(n > 0, curr_seg_index,self.index_att[n])
e1 = self.distance(self.C, T.tanh(dis_curr)) #TB
att_w1 = self.softmax(e1, ind_curr)
att_w2 = self.softmax(e1, self.I_dec)
if att_method == 'min_dist':
min_dist = T.min(e1,axis=0) #B
elif att_method.startswith("entropy"):
log_alpha = T.log(T.maximum(att_w2,numpy.float32(1e-7)))
min_dist = T.sum(att_w2 * log_alpha,axis=0) #B
else:
min_dist = None
temperature = self.calc_temperature(att_method,min_dist)
temperature = theano.ifelse.ifelse(self.epoch > numpy.float32(self.layer.attrs['attention_epoch']),T.ones_like(temperature),temperature)
att_w = (numpy.float32(1) - temperature) * att_w1 + temperature * att_w2
else:
if self.layer.attrs['n_out'] == self.layer.attrs['attention_template']:
dis_curr = y_p
else:
dis_curr = T.dot(y_p,self.W_att_dec) + self.b_att_dec
e1 = self.distance(self.C, T.tanh(dis_curr))
att_w = self.softmax(e1,self.I_dec)
z = T.sum(self.B * att_w.dimshuffle(0, 1, 'x').repeat(self.B.shape[2], axis=2), axis=0)
else:
if not self.layer.eval_flag:
att_pts = self.inv_att.argmax(axis=2) + T.arange(self.inv_att.shape[1]) * self.inv_att.shape[2] # NB
if self.layer.attrs['n_out'] == self.layer.attrs['attention_template']:
C = self.E.dimshuffle(1, 0, 2).reshape((self.E.shape[0] * self.E.shape[1], self.E.shape[2]))[att_pts] #NBD
dis_curr = y_p
else:
C = T.dot(
self.E.dimshuffle(1, 0, 2).reshape((self.E.shape[0] * self.E.shape[1], self.E.shape[2]))[att_pts],
self.W_att_re) + self.b_att_re # NBD
prev_dec_step = T.dot(y_p,self.W_att_dec) + self.b_att_dec #BD
dis_curr = prev_dec_step
ind_curr = self.red_ind
e1 = self.distance(C,T.tanh(dis_curr))
att_w = self.softmax(e1,ind_curr)
z = T.sum(C * att_w.dimshuffle(0, 1, 'x').repeat(C.shape[2], axis=2), axis=0)
else:
if self.layer.attrs['n_out'] == self.layer.attrs['attention_template']:
dis_curr = y_p
else:
prev_dec_step = T.dot(y_p, self.W_att_dec) + self.b_att_dec # BD
dis_curr = prev_dec_step
ind_curr = self.I_dec
e1 = self.distance(self.C, T.tanh(dis_curr))
att_w = self.softmax(e1, ind_curr)
z = T.sum(self.C * att_w.dimshuffle(0, 1, 'x').repeat(self.C.shape[2], axis=2), axis=0)
res = T.dot(z, self.W_att_in) + self.b_att_in
inp = res
return inp, updates
class AttentionTime(AttentionList):
"""
Concatenate time-aligned base element into single list element
"""
name = "attention_time"
def make_base(self):
self.base = [T.concatenate([b.output[::b.attrs['direction']] for b in self.layer.base], axis=2)]
self.base[0].index = self.layer.base[0].index
self.base[0].output = self.base[0]
self.base[0].attrs = { 'n_out' : sum([b.attrs['n_out'] for b in self.layer.base]), 'direction' : 1 }
def create_vars(self):
self.make_base()
super(AttentionTime, self).create_vars()
def default_updates(self):
self.make_base()
self.glimpses = [ [] ] * len(self.base)
self.n_glm = max(self.attrs['glimpse'],1)
return { self.n : self.n + T.constant(1,'float32') }
class AttentionTree(AttentionList):
"""
attention over hierarchy of bases in different time resolutions
"""
name = "attention_tree"
def attend(self, y_p):
B = self.custom_vars['B_0']
for g in range(self.n_glm):
prev = []
for i in range(len(self.base)-1,-1,-1):
B, C, I, H, W_att_in, b_att_in = self.get(y_p, i, g)
h_p = sum([h_p] + prev) / T.constant(len(self.base)-i,'float32')
w = self.softmax(self.distance(C, h_p), I)
prev.append(T.sum(C * w.dimshuffle(0,1,'x').repeat(C.shape[2],axis=2),axis=0))
self.glimpses[i].append(prev[-1])
return T.dot(T.sum(B * w.dimshuffle(0,1,'x').repeat(B.shape[2],axis=2),axis=0), self.custom_vars['W_att_in_0']), {}
class AttentionBin(AttentionList):
"""
pruning of hypotheses in base[0] by attending over versions in time lower resolutions
"""
name = "attention_bin"
def attend(self, y_p):
updates = self.default_updates()
for g in range(self.attrs['glimpse']):
for i in range(len(self.base)-1,-1,-1):
factor = T.constant(self.base[i].attrs['factor'][0], 'int32') if i > 0 else 1
B, C, I, H, W_att_in, b_att_in = self.get(y_p, i, g)
if i == len(self.base) - 1:
z_i = self.distance(C, H)
else:
length = T.cast(T.max(T.sum(I,axis=0))+1,'int32')
ext = T.cast(T.minimum(ext/factor,T.min(length)),'int32')
def pick(i_t, ext):
pad = T.minimum(i_t+ext, B.shape[0]) - ext
return T.concatenate([T.zeros((pad,), 'int8'), T.ones((ext,), 'int8'), T.zeros((B.shape[0]-pad-ext+1,), 'int8')], axis=0)
idx, _ = theano.map(pick, sequences = [pos/factor], non_sequences = [ext])
idx = (idx.dimshuffle(1,0)[:-1].flatten() > 0).nonzero()
C = C.reshape((C.shape[0]*C.shape[1],C.shape[2]))[idx].reshape((ext,C.shape[1],C.shape[2]))
z_i = self.distance(C, H)
I = I.reshape((I.shape[0]*I.shape[1],))[idx].reshape((ext,I.shape[1]))
if i > 0:
pos = T.argmax(self.softmax(z_i,I),axis=0) * factor