forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiBatchBeam.py
487 lines (428 loc) · 20.9 KB
/
MultiBatchBeam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import numpy
import theano
import theano.sandbox.cuda
import theano.tensor as T
from theano.gof.opt import OpSub
from theano.compile import optdb
from theano import gof
def multi_batch_beam(array, start_idxs, batch_lens, beam_width, wrap_mode, pad_left=0, pad_right=0, idx_dim=0, batch_dim=1):
"""
:param array: ndarray, at least 2D. symbolic
:param start_idxs: ndarray, 1D. symbolic. can be float (for gpu)
:param batch_lens: ndarray, 1D. symbolic. len of each batch. can be float (for gpu)
:param beam_width: scalar. symbolic.
:param wrap_mode: "wrap_around" or "pad". static.
:param idx_dim: int. where to apply each start_idxs[i]. static.
:param batch_dim: the same dim as in start_idxs. static.
:param pad_value: used in wrap_mode "pad". automatically broadcasted. symbolic.
:return: ndarray like array, but shape[idx_dim] == beam_width
See also `_naive_multi_batch_beam` for one naive reference implementation.
"""
assert array.ndim >= 2
assert start_idxs.ndim == 1
assert batch_lens.ndim == 1
assert idx_dim < array.ndim
assert batch_dim < array.ndim
assert idx_dim != batch_dim
assert wrap_mode in ("wrap_around", "pad")
op = MultiBatchBeamOp(wrap_mode, idx_dim, batch_dim)
return op(array, start_idxs, batch_lens, beam_width, pad_left, pad_right)
def _naive_multi_batch_beam(array, start_idxs, batch_lens, beam_width, wrap_mode, pad_left=0, pad_right=0, idx_dim=0, batch_dim=1):
assert array.ndim >= 2
assert start_idxs.ndim == 1
assert batch_lens.ndim == 1
assert idx_dim < array.ndim
assert batch_dim < array.ndim
assert idx_dim != batch_dim
n_batch = array.shape[batch_dim]
assert start_idxs.shape == (n_batch, )
assert batch_lens.shape == (n_batch, )
pad_left = numpy.asarray(pad_left)
pad_left_bc = pad_left.reshape(*([1] * (array.ndim - pad_left.ndim) + list(pad_left.shape)))
pad_right = numpy.asarray(pad_right)
pad_right_bc = pad_right.reshape(*([1] * (array.ndim - pad_right.ndim) + list(pad_right.shape)))
if idx_dim != 0: raise NotImplementedError # This is usually the time dim.
if batch_dim != 1: raise NotImplementedError
# Thus, array is usually in format (time,batch,dim).
beam = numpy.zeros((beam_width, n_batch) + array.shape[2:], dtype=array.dtype)
for i0 in range(beam_width):
for i1 in range(n_batch):
idx = start_idxs[i1] + i0
if wrap_mode == "wrap_around":
idx = idx % batch_lens[i1]
elif wrap_mode == "pad":
if idx < 0:
beam[i0, i1] = pad_left_bc
continue
elif idx >= batch_lens[i1]:
beam[i0, i1] = pad_right_bc
continue
beam[i0, i1] = array[idx, i1]
return beam
def _theano_cpu_multi_batch_beam(array, start_idxs, batch_lens, beam_width, wrap_mode, pad_left=0, pad_right=0, idx_dim=0, batch_dim=1):
array = T.as_tensor(array)
start_idxs = T.as_tensor(start_idxs)
if start_idxs.dtype.startswith("float"):
start_idxs = T.iround(start_idxs)
batch_lens = T.as_tensor(batch_lens)
if batch_lens.dtype.startswith("float"):
batch_lens = T.iround(batch_lens)
beam_width = T.as_tensor(beam_width)
if beam_width.dtype.startswith("float"):
beam_width = T.iround(beam_width)
pad_left = T.as_tensor(pad_left)
pad_right = T.as_tensor(pad_right)
assert array.ndim >= 2
assert start_idxs.ndim == 1
assert batch_lens.ndim == 1
assert beam_width.ndim == 0
assert idx_dim < array.ndim
assert batch_dim < array.ndim
assert idx_dim != batch_dim
n_batch = array.shape[batch_dim]
if idx_dim != 0: raise NotImplementedError
if batch_dim != 1: raise NotImplementedError
if wrap_mode != "wrap_around": raise NotImplementedError
idxs_0 = start_idxs.dimshuffle('x', 0) # (beam,batch)
idxs = idxs_0 + T.arange(beam_width).dimshuffle(0, 'x') # (beam,batch)
idxs_wrapped = idxs % batch_lens.dimshuffle('x', 0) # (beam,batch)
batches = T.arange(n_batch) # (batch,)
beam = array[idxs_wrapped[:, batches], batches] # (beam,batch,...)
if wrap_mode == "wrap_around":
pass # Done that.
elif wrap_mode == "pad":
cond_left = T.lt(idxs, 0) # (beam,batch)
cond_right = T.ge(idxs, batch_lens.dimshuffle('x', 0)) # (beam,batch)
cond_left_bc = cond_left.dimshuffle(beam_width, n_batch, *([1] * (array.ndim - 2)))
cond_right_bc = cond_right.dimshuffle(beam_width, n_batch, *([1] * (array.ndim - 2)))
pad_left_bc = pad_left.dimshuffle(*(['x'] * (array.ndim - pad_left.ndim) +
[pad_left.shape[i] for i in range(pad_left.ndim)]))
pad_right_bc = pad_left.dimshuffle(*(['x'] * (array.ndim - pad_right.ndim) +
[pad_right.shape[i] for i in range(pad_right.ndim)]))
beam = T.switch(cond_left_bc, beam, T.cast(pad_left_bc, dtype=array.dtype))
beam = T.switch(cond_right_bc, beam, T.cast(pad_right_bc, dtype=array.dtype))
else:
raise Exception("MultiBatchBeam: unknown wrap mode: %r" % wrap_mode)
return beam
def _naive_multi_batch_beam_grad(array, start_idxs, batch_lens, beam_width, wrap_mode, pad_left=0, pad_right=0, idx_dim=0, batch_dim=1, output_grad=None):
assert array.ndim >= 2
assert start_idxs.ndim == 1
assert batch_lens.ndim == 1
assert idx_dim < array.ndim
assert batch_dim < array.ndim
assert idx_dim != batch_dim
n_batch = array.shape[batch_dim]
assert start_idxs.shape == (n_batch, )
assert batch_lens.shape == (n_batch, )
D_beam = output_grad
pad_left = numpy.asarray(pad_left)
pad_right = numpy.asarray(pad_right)
if idx_dim != 0: raise NotImplementedError # This is usually the time dim.
if batch_dim != 1: raise NotImplementedError
assert D_beam.shape == (beam_width, n_batch) + array.shape[2:]
# Thus, array is usually in format (time,batch,dim).
D_array = numpy.zeros_like(array, dtype="float32")
if wrap_mode == "pad":
D_pad_left = numpy.zeros(array.shape[2:], dtype="float32")
D_pad_right = numpy.zeros(array.shape[2:], dtype="float32")
else:
D_pad_left = D_pad_right = None
for i0 in range(beam_width):
for i1 in range(n_batch):
idx = start_idxs[i1] + i0
if wrap_mode == "wrap_around":
idx = idx % batch_lens[i1]
elif wrap_mode == "pad":
if idx < 0:
D_pad_left += D_beam[i0, i1]
continue
if idx >= batch_lens[i1]:
D_pad_right += D_beam[i0, i1]
continue
D_array[idx, i1] = D_beam[i0, i1]
if wrap_mode == "pad":
if D_pad_left.ndim > pad_left.ndim:
D_pad_left = numpy.sum(D_pad_left, axis=tuple(range(D_pad_left.ndim - pad_left.ndim)))
if D_pad_right.ndim > pad_right.ndim:
D_pad_right = numpy.sum(D_pad_right, axis=tuple(range(D_pad_right.ndim - pad_right.ndim)))
assert D_pad_left.shape == pad_left.shape
assert D_pad_right.shape == pad_right.shape
return D_array, D_pad_left, D_pad_right
def _theano_cpu_multi_batch_beam_grad(array, start_idxs, batch_lens, beam_width, wrap_mode, pad_left=0, pad_right=0, idx_dim=0, batch_dim=1, output_grad=None):
# Note: This is slow and hacky. This will create an index-array of the size of the original array.
# This is calculated on the CPU. The subtensor then can be done on the GPU, but we should avoid the first part.
D_beam = output_grad
prod_array_shape = T.prod(array.shape)
prod_pad_left_shape = T.prod(pad_left.shape)
prod_pad_right_shape = T.prod(pad_right.shape)
D_array_tmp_size = prod_array_shape
if wrap_mode == "pad":
D_array_tmp_size += prod_pad_left_shape + prod_pad_right_shape
D_array_tmp_flat = T.zeros([D_array_tmp_size], dtype="float32") # with pad values
if wrap_mode == "pad":
# Calculate the indices for D_pad_left/D_pad_right in D_array_tmp_flat.
pad_left_idxs = T.arange(prod_pad_left_shape) + prod_array_shape
pad_right_idxs = T.arange(prod_pad_right_shape) + prod_array_shape + prod_pad_left_shape
pad_left_idxs = pad_left_idxs.reshape(pad_left.shape)
pad_right_idxs = pad_right_idxs.reshape(pad_right.shape)
else:
pad_left_idxs = pad_right_idxs = 0
all_idxs = T.arange(T.prod(array.shape)).reshape(array.shape)
idxs = multi_batch_beam(array=all_idxs, start_idxs=start_idxs, batch_lens=batch_lens, beam_width=beam_width,
wrap_mode=wrap_mode,
pad_left=pad_left_idxs, pad_right=pad_right_idxs,
idx_dim=idx_dim, batch_dim=batch_dim)
D_array_tmp_flat = T.inc_subtensor(D_array_tmp_flat[idxs.flatten()], D_beam.flatten())
if wrap_mode == "pad":
D_array = D_array_tmp_flat[:prod_array_shape].reshape(array.shape)
D_pad_left = D_array_tmp_flat[pad_left_idxs.flatten()].reshape(pad_left.shape)
D_pad_right = D_array_tmp_flat[pad_right_idxs.flatten()].reshape(pad_right.shape)
else:
D_array = D_array_tmp_flat.reshape(array.shape)
D_pad_left = D_pad_right = T.DisconnectedType()()
return D_array, D_pad_left, D_pad_right
class MultiBatchBeamOp(theano.Op):
__props__ = ("wrap_mode", "idx_dim", "batch_dim")
def __init__(self, wrap_mode, idx_dim=0, batch_dim=1):
super(MultiBatchBeamOp, self).__init__()
self.wrap_mode = wrap_mode
self.idx_dim = idx_dim
self.batch_dim = batch_dim
def make_node(self, array, start_idxs, batch_lens, beam_width, pad_left, pad_right):
array = T.as_tensor_variable(array)
start_idxs = T.as_tensor_variable(start_idxs)
batch_lens = T.as_tensor_variable(batch_lens)
beam_width = T.as_tensor_variable(beam_width)
pad_left = T.as_tensor_variable(pad_left)
pad_right = T.as_tensor_variable(pad_right)
assert array.ndim >= 2
assert start_idxs.ndim == 1
assert batch_lens.ndim == 1
assert beam_width.ndim == 0
return theano.Apply(self, [array, start_idxs, batch_lens, beam_width, pad_left, pad_right], [array.type()])
def perform(self, node, inputs, output_storage):
array, start_idxs, batch_lens, beam_width, pad_left, pad_right = inputs
beam_out, = output_storage
n_batches = array.shape[self.batch_dim]
assert start_idxs.shape[0] == n_batches
assert batch_lens.shape[0] == n_batches
if not start_idxs.dtype.name.startswith("int"):
start_idxs = numpy.round(start_idxs).astype("int64")
if not batch_lens.dtype.name.startswith("int"):
batch_lens = numpy.round(batch_lens).astype("int64")
if not beam_width.dtype.name.startswith("int"):
beam_width = int(numpy.round(beam_width))
pad_left_bc = numpy.asarray(pad_left).reshape(*([1] * (array.ndim - pad_left.ndim) + list(pad_left.shape)))
pad_right_bc = numpy.asarray(pad_right).reshape(*([1] * (array.ndim - pad_right.ndim) + list(pad_right.shape)))
idxs_bc = numpy.arange(beam_width).reshape(beam_width, 1) # dimshuffle(0, 'x') (beam,batch)
start_idxs_bc = start_idxs.reshape(1, n_batches) # dimshuffle('x', 0) (beam,batch)
idxs = idxs_bc + start_idxs_bc # (beam,batch)
batch_lens_bc = batch_lens.reshape(1, n_batches) # dimshuffle('x', 0) (beam,batch)
idxs_wrapped = idxs % batch_lens_bc
array_remaining_dims = sorted(set(range(array.ndim)) - set([self.idx_dim, self.batch_dim]))
array_trans_dims_order = [self.idx_dim, self.batch_dim] + array_remaining_dims
array_trans = array.transpose(*array_trans_dims_order) # (time,batch,...)
beam_trans = array_trans[idxs_wrapped, numpy.arange(n_batches)] # (beam,batch,...)
if self.wrap_mode == "wrap_around":
pass # We have done exactly that.
elif self.wrap_mode == "pad":
cond_left = idxs < 0 # (beam,batch)
cond_right = idxs >= batch_lens_bc # (beam,batch)
cond_left_bc = cond_left.reshape(beam_width, n_batches, *([1] * len(array_remaining_dims)))
cond_right_bc = cond_right.reshape(beam_width, n_batches, *([1] * len(array_remaining_dims)))
beam_trans = numpy.where(cond_left_bc, numpy.cast[array.dtype](pad_left_bc), beam_trans)
beam_trans = numpy.where(cond_right_bc, numpy.cast[array.dtype](pad_right_bc), beam_trans)
else:
raise Exception("MultiBatchBeam: unknown wrap mode: %r" % self.wrap_mode)
beam = beam_trans.transpose(*map(array_trans_dims_order.index, range(array.ndim)))
beam_out[0] = beam
def infer_shape(self, node, input_shapes):
array, start_idxs, batch_lens, beam_width, pad_left, pad_right = node.inputs
beam_width = T.cast(beam_width, dtype="int64")
array_shape, start_idxs_shape, batch_lens_shape, beam_width_shape, pad_left_shape, pad_right_shape = input_shapes
beam_shape = [beam_width if i == self.idx_dim else array_shape[i] for i in range(len(array_shape))]
return [tuple(beam_shape)]
def grad(self, inputs, output_grads):
array, start_idxs, batch_lens, beam_width, pad_left, pad_right = inputs
D_beam, = output_grads
if not isinstance(pad_left, theano.Constant):
raise NotImplementedError("D_pad_left not implemented...")
if not isinstance(pad_right, theano.Constant):
raise NotImplementedError("D_pad_right not implemented...")
grad_op = MultiBatchBeamGradAddOp(wrap_mode=self.wrap_mode, zero_with_shape=True, array_ndim=array.ndim,
idx_dim=self.idx_dim, batch_dim=self.batch_dim)
D_array = grad_op(array.shape, start_idxs, batch_lens, beam_width, D_beam)
if self.wrap_mode == "wrap_around":
D_pad_left = D_pad_right = T.DisconnectedType()()
elif self.wrap_mode == "pad":
D_pad_left = D_pad_right = T.DisconnectedType()()
# XXX...
# D_pad_left = T.zeros(pad_left.shape, dtype="float32")
# D_pad_right = T.zeros(pad_right.shape, dtype="float32")
else:
assert False, self.wrap_mode
# Those are all discrete values. The gradient is 0 almost everywhere, except for integers where it is not defined.
D_start_idxs = T.DisconnectedType()()
D_batch_lens = T.DisconnectedType()()
D_beam_width = T.DisconnectedType()()
return [D_array, D_start_idxs, D_batch_lens, D_beam_width, D_pad_left, D_pad_right]
def connection_pattern(self, node):
# Only the gradient of the first input (array) will be connected.
# All others are disconnected (because round() or floor() is used on them.).
pattern = [[True], [False], [False], [False], [False], [False]]
# if self.wrap_mode == "pad": # XXX... we assume constant for now
# pattern[-2:] = [[True], [True]]
assert len(pattern) == len(node.inputs)
return pattern
def _len_of_shape(shape):
if isinstance(shape, (list,tuple)):
return len(shape)
if isinstance(shape, T.Apply):
if isinstance(shape.op, T.Shape):
assert len(shape.inputs) == 1
return shape.inputs[0].ndim
raise NotImplementedError("cannot handle %r" % shape)
inplace_increment = None
if theano.config.cxx:
import theano.gof.cutils # needed to import cutils_ext
try:
from cutils_ext.cutils_ext import inplace_increment
except ImportError:
pass
class MultiBatchBeamGradAddOp(theano.Op):
__props__ = ("wrap_mode", "idx_dim", "batch_dim", "inplace", "zero_with_shape", "array_ndim")
def __init__(self, wrap_mode, idx_dim=0, batch_dim=1, inplace=False, zero_with_shape=False, array_ndim=None):
"""
(D_array / D_array_shape, start_idxs, batch_lens, beam_width, D_beam) -> D_array + grad
:param str wrap_mode: "wrap_around" or "pad"
:param int idx_dim: usually that's time dim
:param int batch_dim: batch dim
:param bool inplace: operate inplace on input
:param bool zero_with_shape: we get D_array_shape as the first input and init D_array with zero
:param int array_ndim: ndim of array/D_array. needed for zero_with_shape
"""
super(MultiBatchBeamGradAddOp, self).__init__()
self.wrap_mode = wrap_mode
self.idx_dim = idx_dim
self.batch_dim = batch_dim
self.inplace = inplace
self.zero_with_shape = zero_with_shape
self.array_ndim = array_ndim
if zero_with_shape:
assert not inplace
assert array_ndim > 0
if inplace:
# We operate inplace on D_array.
self.destroy_map = {0: [0]}
def make_node(self, D_array_or_shape, start_idxs, batch_lens, beam_width, D_beam):
# XXX: Currently without D_pad_left and D_pad_right.
start_idxs = T.as_tensor_variable(start_idxs)
batch_lens = T.as_tensor_variable(batch_lens)
beam_width = T.as_tensor_variable(beam_width)
D_beam = T.as_tensor_variable(D_beam)
if self.zero_with_shape:
D_array_ndim = self.array_ndim
else:
D_array_ndim = D_array_or_shape.ndim
assert start_idxs.ndim == 1
assert batch_lens.ndim == 1
assert beam_width.ndim == 0
return theano.Apply(self,
[D_array_or_shape, start_idxs, batch_lens, beam_width, D_beam],
[T.TensorType("float32", (False,) * D_array_ndim)("D_array")])
def infer_shape(self, node, input_shapes):
if self.zero_with_shape:
D_array_ndim = self.array_ndim
shape = node.inputs[0] # This is symbolic.
return [[shape[i] for i in range(D_array_ndim)]]
else:
return [input_shapes[0]]
def perform(self, node, inputs, output_storage):
D_array_or_shape, start_idxs, batch_lens, beam_width, D_beam = inputs
out_D_array, = output_storage
if self.inplace:
out_D_array[0] = D_array = D_array_or_shape
elif self.zero_with_shape:
out_D_array[0] = D_array = numpy.zeros(D_array_or_shape, "float32")
else:
out_D_array[0] = D_array = D_array_or_shape.copy()
n_batches = D_array.shape[self.batch_dim]
idxs_bc = numpy.arange(beam_width).reshape(beam_width, 1) # dimshuffle(0, 'x') (beam,batch)
start_idxs_bc = start_idxs.reshape(1, n_batches) # dimshuffle('x', 0) (beam,batch)
idxs = idxs_bc + start_idxs_bc # (beam,batch)
batch_lens_bc = batch_lens.reshape(1, n_batches) # dimshuffle('x', 0) (beam,batch)
assert idxs.shape == D_beam.shape[:2]
idxs = idxs.astype("int32")
if self.wrap_mode == "wrap_around":
idxs = idxs % batch_lens_bc.astype("int32")
elif self.wrap_mode == "pad":
idxs = numpy.where(idxs >= batch_lens_bc, -1, idxs)
cond_bc = (idxs < 0).reshape(*(D_beam.shape[:2] + (1,) * (D_beam.ndim - 2)))
D_beam = numpy.where(cond_bc, numpy.float32(0), D_beam) # XXX: ignore padding part
idxs = numpy.where(idxs < 0, 0, idxs)
else:
assert False, self.wrap_mode
if self.idx_dim != 0: raise NotImplementedError # TODO...
if self.batch_dim != 1: raise NotImplementedError # TODO...
# In Numpy, x[idx] += y doesn't work if the same index is present
# many times: it does it only once. Is it a bug? In any case, for
# this reason we implement our own 'inc' iteration.
# See also theano.tensor.subtensor.AdvancedIncSubtensor documentation.
if inplace_increment is None: raise NotImplementedError("need Numpy 1.8 or later")
# This is like D_array_and_pad[idxs, numpy.arange(n_batches)] += D_beam .
inplace_increment(D_array, (idxs, numpy.arange(n_batches)), D_beam)
# http://deeplearning.net/software/theano/extending/optimization.html
# See also theano/compile/mode.py for reference about the position priority numbers.
# After priority 50 we can do destructive inplace operations.
@gof.local_optimizer([T.add])
def add_merge_MultiBatchBeamGradAddOp(node):
if node.op != T.add: return False
if len(node.inputs) < 2: return False
grad_op_idx = None
grad_op_v = None
grad_op = None
for i, input in enumerate(node.inputs):
if input.owner and isinstance(input.owner.op, MultiBatchBeamGradAddOp):
grad_op = input.owner.op
if not grad_op.inplace: # we cannot merge when we operate inplace on it
grad_op_v = input
grad_op_idx = i
break
if grad_op_idx is None: return False
sum_inputs = [node.inputs[i] for i in range(len(node.inputs)) if i != grad_op_idx]
if grad_op.zero_with_shape:
# Make new grad_op without zero_with_shape.
kwargs = {k: getattr(grad_op, k) for k in grad_op.__props__}
kwargs["zero_with_shape"] = False
grad_op = grad_op.__class__(**kwargs)
else:
old_grad_op_input0 = grad_op_v.owner.inputs[0]
sum_inputs = [old_grad_op_input0] + sum_inputs
assert len(sum_inputs) > 0
if len(sum_inputs) == 1:
new_grad_op_input0 = sum_inputs[0]
else:
new_grad_op_input0 = T.add(*sum_inputs)
new_grad_op_inputs = [new_grad_op_input0] + grad_op_v.owner.inputs[1:]
new_v = grad_op(*new_grad_op_inputs)
return [new_v]
optdb.register('add_merge_MultiBatchBeamGradAddOp',
gof.TopoOptimizer(add_merge_MultiBatchBeamGradAddOp),
0.1, 'fast_run')
@gof.local_optimizer([MultiBatchBeamGradAddOp], inplace=True)
def inplace_MultiBatchBeamGradAddOp(node):
if isinstance(node.op, MultiBatchBeamGradAddOp) and not node.op.inplace and not node.op.zero_with_shape:
kwargs = {k: getattr(node.op, k) for k in node.op.__props__}
kwargs["inplace"] = True
new_op = node.op.__class__(**kwargs)
new_v = new_op(*node.inputs)
return [new_v]
return False
optdb.register('inplace_MultiBatchBeamGradAddOp',
gof.TopoOptimizer(inplace_MultiBatchBeamGradAddOp
, failure_callback=gof.TopoOptimizer.warn_inplace
),
76, # after ScanInplaceOptimizer
'fast_run', 'inplace')
class GpuMultiBatchBeamOp(theano.sandbox.cuda.GpuOp):
pass # TODO