forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHyperParamTuning.py
757 lines (690 loc) · 25.4 KB
/
HyperParamTuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
"""
Here we provide some logic to perform hyper-parameter search.
See ``demos/demo-hyper-param-tuning.config`` for an example config.
For each entry in the config where search should be performed on,
you declare it as an instance of :class:`HyperParam`.
Then, this module will find all such instances in the config and replace it with values during search.
The search itself is some evolutionary genetic search.
There are many variants to it, e.g. such as what kind of manipulations you,
e.g. cross-over and mutation, and also, how you sample new random values.
The current logic probably can be improved.
Currently, each search is a training started from the scratch, and the accumulated train score
is used as an evaluation measure.
This probably also can be improved.
Also, instead of always starting from scratch, we could keep intermediate results and resume from them,
or use real training intermediate results and resume from them.
We could even do some simple search in the beginning of each epoch when we keep it cheap enough.
Also, we could store the population of hyper params on disk to allow resuming of a search.
"""
from __future__ import print_function
import sys
import time
import numpy
import tensorflow as tf
from Config import Config
from Log import log
from Dataset import Dataset
from GeneratingDataset import StaticDataset
from TFEngine import Engine, Runner, CancelTrainingException
from Util import CollectionReadCheckCovered, hms_fraction, guess_requested_max_num_threads
Eps = 1e-16
class HyperParam:
def __init__(self, dtype=None, bounds=None, classes=None, log=False, default=None):
"""
:param str|type|None|list dtype: e.g. "float", "int" or "bool", or if Collection, will be classes
:param None|list[int|float] bounds: inclusive
:param list|None classes:
:param bool log: if in log-scale
:param float|int|object|None default:
"""
if isinstance(dtype, (list, tuple)):
assert classes is None
assert bounds is None
classes = dtype
dtype = None
if dtype is None:
assert classes is not None
elif dtype == "float":
dtype = float
elif dtype == "int":
dtype = int
elif dtype == "bool":
dtype = bool
assert dtype in (float, int, bool, None)
if bounds is not None:
assert dtype in (int, float)
assert isinstance(bounds, (list, tuple))
assert len(bounds) == 2
assert dtype(bounds[0]) < dtype(bounds[1])
if classes is not None:
assert isinstance(classes, (list, tuple)), "should be with a defined order"
assert len(classes) > 0
self.dtype = dtype
self.bounds = bounds
self.classes = classes
self.log_space = log
self.default = default
self.unique_idx = HyperParam._get_next_unique_idx()
self.usages = [] # type: list[_AttrChain]
_unique_idx = 0
@classmethod
def _get_next_unique_idx(cls):
cls._unique_idx += 1
return cls._unique_idx
def __repr__(self):
if self.classes is not None:
return "HyperParam(%r)" % self.classes
dtype_name = self.dtype.__name__
ext = ""
if self.log_space:
ext += ", log=True"
if self.default is not None:
ext += ", default=%r" % self.default
if self.bounds is not None:
return "HyperParam(%s, %s%s)" % (dtype_name, self.bounds, ext)
assert self.bounds is None
return "HyperParam(%s%s)" % (dtype_name, ext)
def get_canonical_usage(self):
return self.get_sorted_usages()[0]
def get_sorted_usages(self):
return sorted(self.usages, key=lambda chain: min(2, len(chain.chain)))
def description(self):
if len(self.usages) == 0:
usage_str = "<no usage>"
elif len(self.usages) == 1:
usage_str = str(self.usages[0])
else:
usage_str = str(self.get_canonical_usage()) + "|..."
return usage_str + ": %s" % self
def get_num_instances(self, upper_limit=100):
"""
:param int upper_limit:
:rtype: int
"""
assert upper_limit >= 2
if self.classes is not None:
return min(len(self.classes), upper_limit)
if self.dtype is bool:
return 2
if self.dtype is float:
return upper_limit
if self.dtype is int:
x1, x2 = self.bounds
x1 = numpy.ceil(x1)
x2 = numpy.floor(x2)
assert x1 < x2
return min(x2 - x1 + 1, upper_limit)
raise Exception("invalid dtype %r" % self.dtype)
def merge_values(self, value1, value2):
"""
Merge two values, which are valid values for this `HyperParam`.
:param T value1:
:param T value2:
:rtype: T
"""
if self.dtype is bool:
return value1
if self.log_space:
x0, x1 = value1, value2
if x0 > x1:
x0, x1 = x1, x0
if x0 < 0 or x1 < 0:
assert x0 <= x1 <= 0
sign = -1
x0, x1 = -x1, -x0
else:
sign = 1
assert x1 >= x0 >= 0
x0o = x0
if x0 < Eps * 0.5:
x0 = Eps * 0.5
if x1 < Eps:
x1 = Eps
x0 = numpy.log(float(x0))
x1 = numpy.log(float(x1))
y = numpy.exp(x0 + (x1 - x0) * 0.5)
if y <= Eps:
y = x0o
return self.dtype(y) * sign
if self.dtype is int:
return (value1 + value2) // 2
return self.dtype((value1 + value2) * 0.5)
def get_value(self, selected, eps=Eps):
"""
:param float selected: must be between 0 and 1
:param float eps: if in log-space and you have e.g. bounds=[0,1], will be the lowest value, before 0. see code.
:rtype: float|int|bool|object
"""
assert 0 < eps
assert 0 <= selected <= 1
if self.classes:
return self.classes[int(len(self.classes) * selected)]
if self.dtype is bool:
return selected > 0.5
if self.bounds:
if self.dtype is int and not self.log_space:
return self.bounds[0] + int((self.bounds[1] - self.bounds[0]) * selected)
if self.log_space:
x0, x1 = self.bounds
if x0 < 0 or x1 < 0:
assert x0 < x1 <= 0
sign = -1
x0, x1 = -x1, -x0
else:
sign = 1
assert x1 > x0 >= 0
x0b, x1b = x0, x1
if x0b < eps * 0.5:
x0b = eps * 0.5
if x1b < eps:
x1b = eps
x0l = numpy.log(float(x0b))
x1l = numpy.log(float(x1b))
y = numpy.exp(x0l + (x1l - x0l) * selected)
if y <= eps:
y = x0
return self.dtype(y) * sign
return self.dtype(self.bounds[0] + (self.bounds[1] - self.bounds[0]) * selected)
# No bounds. So anything -inf to inf.
# But exclude -inf/inf.
# Assume selected is uniform in [0,1], so use the inverse accumulated Gauss density function
# to get normal distributed in [-inf,inf].
x = selected
if x < eps:
x = eps
if x > 1. - eps:
x = 1. - eps
import scipy.special
return self.dtype(scipy.special.ndtri(x))
def get_initial_value(self):
return self.get_value(selected=0.5)
def get_default_value(self):
if self.default is not None:
return self.dtype(self.default)
return self.get_initial_value()
def get_random_value(self, seed, eps=Eps):
"""
:param int seed:
:param float eps: see get_value()
:rtype: float|int|bool|object
"""
rnd = numpy.random.RandomState(seed=seed)
x = rnd.uniform(0.0, 1.0)
if x < eps:
x = 0.0
if x > 1.0 - eps:
x = 1.0
return self.get_value(x, eps=eps)
def get_random_value_by_idx(self, iteration_idx, individual_idx):
"""
:param int iteration_idx:
:param int individual_idx:
:rtype: float|int|bool|object
"""
# Use a deterministic seed for the random number generator
# which will not change on unrelated changes in the config file,
# so that runs will stay deterministic in this sense.
seed = hash_obj((self.get_canonical_usage(), iteration_idx, individual_idx))
return self.get_random_value(seed=seed)
class TrainException(Exception):
pass
class Individual:
def __init__(self, hyper_param_mapping, name):
"""
:param dict[HyperParam] hyper_param_mapping:
:param str name:
"""
self.hyper_param_mapping = hyper_param_mapping
self.cost = None
self.name = name
def cross_over(self, hyper_params, population, random_seed):
"""
:param list[HyperParam] hyper_params:
:param list[Individual] population:
:param int random_seed:
:return: copy of self, cross-overd with others
:rtype: Individual
"""
name = self.name
if len(name) > 10:
name = name[:8] + ".."
name += "x%x" % random_seed
res = Individual(hyper_param_mapping=self.hyper_param_mapping.copy(), name=name)
rnd = numpy.random.RandomState(random_seed)
while True:
other = population[rnd.random_integers(0, len(population) - 1)]
for p in hyper_params:
x = rnd.uniform(0.0, 1.0)
if x > 0.75:
res.hyper_param_mapping[p] = other.hyper_param_mapping[p]
elif x > 0.5:
res.hyper_param_mapping[p] = p.merge_values(res.hyper_param_mapping[p], other.hyper_param_mapping[p])
if rnd.uniform(0.0, 1.0) > 0.5:
break
return res
class Optimization:
def __init__(self, config, train_data):
"""
:param Config.Config config:
:param Dataset train_data:
"""
self.config = config
self.opts = CollectionReadCheckCovered(config.get_of_type("hyper_param_tuning", dict, {}))
self.log = log.v1
train_data.init_seq_order(epoch=1)
self.train_data = StaticDataset.copy_from_dataset(
train_data, max_seqs=self.opts.get("num_train_steps", 100))
self.hyper_params = [] # type: list[HyperParam]
self._find_hyper_params()
if not self.hyper_params:
raise Exception("No hyper params found.")
self.hyper_params.sort(key=lambda p: p.unique_idx)
print("We have found these hyper params:")
for p in self.hyper_params:
print(" %s" % p.description())
self.dry_run_first_individual = self.opts.get("dry_run_first_individual", True)
self.num_iterations = self.opts["num_tune_iterations"]
self.num_individuals = self.opts["num_individuals"]
self.num_kill_individuals = self.opts.get(
"num_kill_individuals", self.num_individuals // 2)
self.num_best = self.opts.get("num_best", 10)
self.num_threads = self.opts.get("num_threads", guess_requested_max_num_threads())
self.opts.assert_all_read()
def _find_hyper_params(self, base=None, visited=None):
"""
:param _AttrChain base:
:param set[int] visited: set of ids
"""
from inspect import ismodule
if base is None:
base = _AttrChain(base=self.config)
if isinstance(base.value, HyperParam):
base.value.usages.append(base)
if base.value not in self.hyper_params:
self.hyper_params.append(base.value)
return
if visited is None:
visited = set()
if id(base.value) in visited:
return
visited.add(id(base.value))
if ismodule(base.value):
return
if isinstance(base.value, dict):
col_type = _AttribOrKey.ColTypeDict
keys = base.value.keys()
elif isinstance(base.value, Config):
col_type = _AttribOrKey.ColTypeConfig
keys = base.value.typed_dict.keys()
else:
# Add other specific object types, but not in generic all.
return
for key in sorted(keys):
child = base.get_extended_chain(_AttribOrKey(key=key, col_type=col_type))
self._find_hyper_params(base=child, visited=visited)
def get_population(self, iteration_idx, num_individuals):
"""
:param int iteration_idx:
:param int num_individuals:
:rtype: list[Individual]
"""
assert num_individuals > 0
return [
self.get_individual(iteration_idx=iteration_idx, individual_idx=i)
for i in range(num_individuals)]
def get_individual(self, iteration_idx, individual_idx):
"""
:param int iteration_idx:
:param int individual_idx:
:rtype: Individual
"""
return Individual(
{p: p.get_random_value_by_idx(iteration_idx=iteration_idx, individual_idx=individual_idx)
for p in self.hyper_params},
name="%i-%i" % (iteration_idx, individual_idx))
def cross_over(self, population, iteration_idx):
"""
:param list[Individual] population: modified in-place
:param int iteration_idx:
"""
for i in range(len(population) - 1):
population[i] = population[i].cross_over(
hyper_params=self.hyper_params,
population=population[:i] + population[i + 1:],
random_seed=iteration_idx * 1013 + i * 17)
def create_config_instance(self, hyper_param_mapping, gpu_ids):
"""
:param dict[HyperParam] hyper_param_mapping: maps each hyper param to some value
:param set[int] gpu_ids:
:rtype: Config
"""
assert set(self.hyper_params) == set(hyper_param_mapping.keys())
from Util import deepcopy
config = deepcopy(self.config)
assert isinstance(config, Config)
for p, value in hyper_param_mapping.items():
assert isinstance(p, HyperParam)
for attr_chain in p.usages:
attr_chain.write_attrib(base=config, new_value=value)
tf_session_opts = config.typed_dict.setdefault("tf_session_opts", {})
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/config.proto
gpu_opts = tf_session_opts.setdefault("gpu_options", tf.GPUOptions())
if isinstance(gpu_opts, dict):
gpu_opts = tf.GPUOptions(**gpu_opts)
gpu_opts.visible_device_list = ",".join(map(str, sorted(gpu_ids)))
return config
def work(self):
print("Starting hyper param search. Using %i threads." % self.num_threads, file=log.v1)
from TFUtil import get_available_gpu_devices
from Log import wrap_log_streams, StreamDummy
from threading import Thread, Condition
from Util import progress_bar, hms, is_tty
class Outstanding:
cond = Condition()
threads = [] # type: list[WorkerThread]
population = []
exit = False
exception = None
class WorkerThread(Thread):
def __init__(self, gpu_ids):
"""
:param set[int] gpu_ids:
"""
super(WorkerThread, self).__init__(name="Hyper param tune train thread")
self.gpu_ids = gpu_ids
self.trainer = None # type: _IndividualTrainer
self.finished = False
self.start()
def cancel(self, join=False):
with Outstanding.cond:
if self.trainer:
self.trainer.cancel_flag = True
if self.trainer.runner:
self.trainer.runner.cancel_flag = True
if join:
self.join()
def get_complete_frac(self):
with Outstanding.cond:
if self.trainer and self.trainer.runner:
return self.trainer.runner.data_provider.get_complete_frac()
return 0.0
def run(self_thread):
try:
while True:
with Outstanding.cond:
if Outstanding.exit or Outstanding.exception:
return
if not Outstanding.population:
self_thread.finished = True
Outstanding.cond.notify_all()
return
individual = Outstanding.population.pop(0)
self_thread.trainer = _IndividualTrainer(optim=self, individual=individual, gpu_ids=self_thread.gpu_ids)
self_thread.name = "Hyper param tune train thread on %r" % individual.name
self_thread.trainer.run()
except Exception as exc:
with Outstanding.cond:
if not Outstanding.exception:
Outstanding.exception = exc or True
Outstanding.cond.notify_all()
for thread in Outstanding.threads:
if thread is not self_thread:
thread.cancel()
if not isinstance(exc, CancelTrainingException):
with Outstanding.cond: # So that we don't mix up multiple on sys.stderr.
# This would normally dump it on sys.stderr so it's fine.
sys.excepthook(*sys.exc_info())
best_individuals = []
population = []
canceled = False
num_gpus = len(get_available_gpu_devices())
print("Num available GPUs:", num_gpus)
num_gpus = num_gpus or 1 # Would be ignored anyway.
interactive = is_tty()
try:
print("Population of %i individuals (hyper param setting instances), running for %i evaluation iterations." % (
self.num_individuals, self.num_iterations), file=log.v2)
for cur_iteration_idx in range(1, self.num_iterations + 1):
print("Starting iteration %i." % cur_iteration_idx, file=log.v2)
if cur_iteration_idx == 1:
population.append(Individual(
{p: p.get_default_value() for p in self.hyper_params}, name="default"))
population.append(Individual(
{p: p.get_initial_value() for p in self.hyper_params}, name="canonical"))
population.extend(self.get_population(
iteration_idx=cur_iteration_idx, num_individuals=self.num_individuals - len(population)))
if cur_iteration_idx > 1:
self.cross_over(population=population, iteration_idx=cur_iteration_idx)
if cur_iteration_idx == 1 and self.dry_run_first_individual:
# Train first directly for testing and to see log output.
# Later we will strip away all log output.
print("Very first try with log output:", file=log.v2)
_IndividualTrainer(optim=self, individual=population[0], gpu_ids={0}).run()
print("Starting training with thread pool of %i threads." % self.num_threads)
iteration_start_time = time.time()
with wrap_log_streams(StreamDummy(), also_sys_stdout=True, tf_log_verbosity="WARN"):
Outstanding.exit = False
Outstanding.population = list(population)
Outstanding.threads = [WorkerThread(gpu_ids={i % num_gpus}) for i in range(self.num_threads)]
try:
while True:
with Outstanding.cond:
if all([thread.finished for thread in Outstanding.threads]) or Outstanding.exception:
break
complete_frac = max(len(population) - len(Outstanding.population) - len(Outstanding.threads), 0)
complete_frac += sum([thread.get_complete_frac() for thread in Outstanding.threads])
complete_frac /= float(len(population))
remaining_str = ""
if complete_frac > 0:
start_elapsed = time.time() - iteration_start_time
total_time_estimated = start_elapsed / complete_frac
remaining_estimated = total_time_estimated - start_elapsed
remaining_str = hms(remaining_estimated)
if interactive:
progress_bar(complete_frac, prefix=remaining_str, file=sys.__stdout__)
else:
print(
"Progress: %.02f%%" % (complete_frac * 100),
"remaining:", remaining_str or "unknown", file=sys.__stdout__)
sys.__stdout__.flush()
Outstanding.cond.wait(1 if interactive else 10)
for thread in Outstanding.threads:
thread.join()
finally:
Outstanding.exit = True
for thread in Outstanding.threads:
thread.cancel(join=True)
Outstanding.threads = []
print("Training iteration elapsed time:", hms(time.time() - iteration_start_time))
if Outstanding.exception:
raise Outstanding.exception
assert not Outstanding.population
print("Training iteration finished.")
population.sort(key=lambda p: p.cost)
del population[-self.num_kill_individuals:]
best_individuals.extend(population)
best_individuals.sort(key=lambda p: p.cost)
del best_individuals[self.num_best:]
population = best_individuals[:self.num_kill_individuals // 4] + population
print("Current best setting, individual %s" % best_individuals[0].name, "cost:", best_individuals[0].cost)
for p in self.hyper_params:
print(" %s -> %s" % (p.description(), best_individuals[0].hyper_param_mapping[p]))
except KeyboardInterrupt:
print("KeyboardInterrupt, canceled search.")
canceled = True
print("Best %i settings:" % len(best_individuals))
for individual in best_individuals:
print("Individual %s" % individual.name, "cost:", individual.cost)
for p in self.hyper_params:
print(" %s -> %s" % (p.description(), individual.hyper_param_mapping[p]))
class _IndividualTrainer:
def __init__(self, optim, individual, gpu_ids):
"""
:param Optimization optim:
:param Individual individual:
:param set[int] gpu_ids:
"""
self.optim = optim
self.individual = individual
self.runner = None # type: Runner
self.gpu_ids = gpu_ids
self.cancel_flag = False
def run(self):
if self.individual.cost is not None:
return self.individual.cost
start_time = time.time()
hyper_param_mapping = self.individual.hyper_param_mapping
print("Training %r using hyper params:" % self.individual.name, file=log.v2)
for p in self.optim.hyper_params:
print(" %s -> %s" % (p.description(), hyper_param_mapping[p]), file=log.v2)
config = self.optim.create_config_instance(hyper_param_mapping, gpu_ids=self.gpu_ids)
engine = Engine(config=config)
train_data = StaticDataset.copy_from_dataset(self.optim.train_data)
engine.init_train_from_config(config=config, train_data=train_data)
# Not directly calling train() as we want to have full control.
engine.epoch = 1
train_data.init_seq_order(epoch=engine.epoch)
batches = train_data.generate_batches(
recurrent_net=engine.network.recurrent,
batch_size=engine.batch_size,
max_seqs=engine.max_seqs,
max_seq_length=int(engine.max_seq_length),
seq_drop=engine.seq_drop,
shuffle_batches=engine.shuffle_batches,
used_data_keys=engine.network.used_data_keys)
engine.updater.set_learning_rate(engine.learning_rate, session=engine.tf_session)
trainer = Runner(engine=engine, dataset=train_data, batches=batches, train=True)
self.runner = trainer
if self.cancel_flag:
raise CancelTrainingException("Trainer cancel flag is set")
trainer.run(report_prefix="hyper param tune train %r" % self.individual.name)
if not trainer.finalized:
print("Trainer exception:", trainer.run_exception, file=log.v1)
raise trainer.run_exception
cost = trainer.score["cost:output"]
print(
"Individual %s:" % self.individual.name,
"Train cost:", cost,
"elapsed time:", hms_fraction(time.time() - start_time),
file=self.optim.log)
self.individual.cost = cost
class _AttribOrKey:
ColTypeConfig = Config
ColTypeDict = dict
ColTypeObj = object
def __init__(self, key, col_type):
"""
:param str|object key:
:param type[object]|type[dict] col_type:
"""
self.key = key
self.col_type = col_type
def __str__(self):
if self.col_type is self.ColTypeConfig:
return "%s" % self.key
if self.col_type is self.ColTypeDict:
return "[%r]" % self.key
if self.col_type is self.ColTypeObj:
return ".%s" % self.key
raise Exception("invalid col_type %r" % self.col_type)
def get(self, parent):
"""
:param object|dict|Config parent:
:rtype: dict|object|HyperParam
"""
if self.col_type is self.ColTypeConfig:
return parent.typed_dict[self.key]
if self.col_type is self.ColTypeDict:
return parent[self.key]
if self.col_type is self.ColTypeObj:
return getattr(parent, self.key)
raise Exception("invalid col_type %r" % self.col_type)
def set(self, parent, new_value):
"""
:param object|dict|Config parent:
:param new_value:
"""
if self.col_type is self.ColTypeConfig:
parent.typed_dict[self.key] = new_value
return
if self.col_type is self.ColTypeDict:
parent[self.key] = new_value
return
if self.col_type is self.ColTypeObj:
setattr(parent, self.key, new_value)
return
raise Exception("invalid col_type %r" % self.col_type)
class _AttrChain:
def __init__(self, base):
"""
:param object|dict base:
"""
self.base = base
self.chain = [] # type: list[_AttribOrKey]
self.value = base # type: HyperParam|object
def __str__(self):
return "".join(map(str, self.chain))
def __repr__(self):
return "<%s %r %r>" % (self.__class__.__name__, self.chain, self.value)
def get_extended_chain(self, attr):
"""
:param _AttribOrKey attr:
:rtype: _AttrChain
"""
sub_chain = _AttrChain(base=self.base)
sub_chain.chain = list(self.chain)
sub_chain.chain.append(attr)
sub_chain.value = attr.get(self.value)
return sub_chain
def write_attrib(self, base, new_value):
"""
:param object|dict|Config base:
:param new_value:
"""
obj = base
assert len(self.chain) >= 1
for attr in self.chain[:-1]:
obj = attr.get(obj)
self.chain[-1].set(obj, new_value)
def hash_str_djb2(s):
"""
:param str s:
:rtype: int
"""
v = 5381
for x in s:
v = ((v << 5) + v) + ord(x)
v = v & 0xFFFFFFFF
return v
def hash_seq(ls):
"""
:param list|tuple ls:
:rtype: int
"""
v = 5381
for x in ls:
v = 1000003 * v + hash_obj(x)
v = v & 0xFFFFFFFF
return v
def hash_int(x):
"""
:param int x:
:rtype: int
"""
return ((x << 11) + x) & 0xFFFFFFFF
def hash_obj(x):
"""
:param tuple|list|str|_AttribOrKey|_AttrChain x:
:rtype: int
"""
if isinstance(x, (list, tuple)):
return hash_seq(x)
if isinstance(x, str):
return hash_str_djb2(x)
if isinstance(x, _AttribOrKey):
return hash_str_djb2(x.key)
if isinstance(x, _AttrChain):
return hash_seq(x.chain)
if isinstance(x, int):
return hash_int(x)
raise TypeError("invalid type %s" % type(x))