-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdversarialModel.py
231 lines (179 loc) · 8.64 KB
/
AdversarialModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import sys
import yaml
import datetime
import shutil
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
if __name__ == "__main__":
file_dir = os.path.dirname(os.path.abspath(__file__))
base_dir = os.path.dirname(file_dir)
base_base_dir = os.path.dirname(base_dir)
if base_dir not in sys.path:
sys.path.append(base_dir)
__package__ = os.path.split(file_dir)[-1]
from .callbacks import ModelCheckpoint
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
from tensorflow.keras.callbacks import CSVLogger
@tf.function
def binary_entropy(target, output):
epsilon = tf.constant(1e-7, dtype=tf.float32)
x = tf.clip_by_value(output, epsilon, 1 - epsilon)
return - target * tf.math.log(x) - (1 - target) * tf.math.log(1 - x)
@tf.function
def accuracy(target, output):
return tf.cast(tf.equal(target, tf.round(output)), tf.float32)
class AdversarialModel(keras.Model):
'''Goal: discriminate class0 vs class1 without learning features that can discriminate class0 vs class2'''
def __init__(self, setup, *args, **kwargs):
super().__init__(*args, **kwargs)
self.class_loss = binary_entropy
self.adv_loss = binary_entropy
self.adv_optimizer = tf.keras.optimizers.AdamW(learning_rate=setup['adv_learning_rate'],
weight_decay=setup['adv_weight_decay'])
self.adv_grad_factor = setup['adv_grad_factor']
self.class_grad_factor = setup['class_grad_factor']
self.class_loss_tracker = keras.metrics.Mean(name="class_loss")
self.adv_loss_tracker = keras.metrics.Mean(name="adv_loss")
self.class_accuracy = keras.metrics.Mean(name="class_accuracy")
self.adv_accuracy = keras.metrics.Mean(name="adv_accuracy")
self.common_layers = []
def add_layer(layer_list, n_units, activation, name):
layer = Dense(n_units, activation=activation, name=name)
layer_list.append(layer)
if setup['dropout'] > 0:
dropout = Dropout(setup['dropout'], name=name + '_dropout')
layer_list.append(dropout)
if setup['use_batch_norm']:
batch_norm = BatchNormalization(name=name + '_batch_norm')
layer_list.append(batch_norm)
for n in range(setup['n_common_layers']):
add_layer(self.common_layers, setup['n_common_units'], setup['activation'], f'common_{n}')
self.class_layers = []
self.adv_layers = []
for n in range(setup['n_adv_layers']):
add_layer(self.class_layers, setup['n_adv_units'], setup['activation'], f'class_{n}')
add_layer(self.adv_layers, setup['n_adv_units'], setup['activation'], f'adv_{n}')
self.class_output = Dense(1, activation='sigmoid', name='class_output')
self.adv_output = Dense(1, activation='sigmoid', name='adv_output')
def call(self, x):
for layer in self.common_layers:
x = layer(x)
x_common = x
for layer in self.class_layers:
x = layer(x)
class_output = self.class_output(x)
x = x_common
for layer in self.adv_layers:
x = layer(x)
adv_output = self.adv_output(x)
return class_output, adv_output
def _step(self, data, training):
x, y = data
ones = tf.ones_like(y)
zeros = tf.zeros_like(y)
w_class = tf.where((y == 0) | (y == 1), ones, zeros)
w_adv = tf.where((y == 0) | (y == 2), ones, zeros)
y_class = tf.where(y == 0 , zeros, ones)
y_adv = tf.where(y == 0, ones, zeros)
def compute_losses():
y_pred_class, y_pred_adv = self(x, training=training)
y_pred_class = tf.reshape(y_pred_class, tf.shape(y_class))
y_pred_adv = tf.reshape(y_pred_adv, tf.shape(y_adv))
class_loss_vec = self.class_loss(y_class, y_pred_class)
class_loss = tf.reduce_mean(tf.multiply(class_loss_vec, w_class))
adv_loss_vec = self.adv_loss(y_adv, y_pred_adv)
adv_loss = tf.reduce_mean(tf.multiply(adv_loss_vec, w_adv))
return y_pred_class, y_pred_adv, class_loss_vec, class_loss, adv_loss_vec, adv_loss
if training:
with tf.GradientTape() as class_tape, tf.GradientTape() as adv_tape:
y_pred_class, y_pred_adv, class_loss_vec, class_loss, adv_loss_vec, adv_loss = compute_losses()
else:
y_pred_class, y_pred_adv, class_loss_vec, class_loss, adv_loss_vec, adv_loss = compute_losses()
class_accuracy_vec = accuracy(y_class, y_pred_class)
adv_accuracy_vec = accuracy(y_adv, y_pred_adv)
self.class_loss_tracker.update_state(class_loss_vec, sample_weight=w_class)
self.adv_loss_tracker.update_state(adv_loss_vec, sample_weight=w_adv)
self.class_accuracy.update_state(class_accuracy_vec, sample_weight=w_class)
self.adv_accuracy.update_state(adv_accuracy_vec, sample_weight=w_adv)
if training:
common_vars = [ var for var in self.trainable_variables if "/common" in var.name ]
class_vars = [ var for var in self.trainable_variables if "/class" in var.name ]
adv_vars = [ var for var in self.trainable_variables if "/adv" in var.name ]
n_common_vars = len(common_vars)
grad_class = class_tape.gradient(class_loss, common_vars + class_vars)
grad_adv = adv_tape.gradient(adv_loss, common_vars + adv_vars)
grad_class_excl = grad_class[n_common_vars:]
grad_adv_excl = grad_adv[n_common_vars:]
grad_common = [ self.class_grad_factor * grad_class[i] - self.adv_grad_factor * grad_adv[i] \
for i in range(len(common_vars)) ]
self.optimizer.apply_gradients(zip(grad_common + grad_class_excl, common_vars + class_vars))
self.adv_optimizer.apply_gradients(zip(grad_adv_excl, adv_vars))
return { m.name: m.result() for m in self.metrics }
def train_step(self, data):
return self._step(data, training=True)
def test_step(self, data):
return self._step(data, training=False)
@property
def metrics(self):
return [
self.class_loss_tracker,
self.adv_loss_tracker,
self.class_accuracy,
self.adv_accuracy,
]
def save_predicate(model, logs):
return abs(logs['val_adv_accuracy'] - 0.5) < 0.01
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', required=False, default='model.yaml', type=str)
parser.add_argument('--output', required=False, default='data', type=str)
parser.add_argument('--gpu', required=False, default='0', type=str)
parser.add_argument('--batch-size', required=False, type=int, default=100)
parser.add_argument('--patience', required=False, type=int, default=10)
parser.add_argument('--n-epochs', required=False, type=int, default=10000)
parser.add_argument('--dataset-train', required=False, default='data/train', type=str)
parser.add_argument('--dataset-val', required=False, default='data/val', type=str)
parser.add_argument('--adv-grad-factor', required=False, type=float, default=None)
parser.add_argument('--class-grad-factor', required=False, type=float, default=None)
parser.add_argument('--summary-only', required=False, action='store_true')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
import tensorflow as tf
with open(args.cfg) as f:
cfg = yaml.safe_load(f)
cfg['adv_grad_factor'] = args.adv_grad_factor if args.adv_grad_factor is not None else 0
cfg['class_grad_factor'] = args.class_grad_factor if args.class_grad_factor is not None else 1
model = AdversarialModel(cfg)
model.compile(loss=None,
optimizer=tf.keras.optimizers.AdamW(learning_rate=cfg['learning_rate'],
weight_decay=cfg['weight_decay']))
dataset_train = tf.data.Dataset.load(args.dataset_train, compression='GZIP')
ds_train = dataset_train.batch(args.batch_size)
dataset_val = tf.data.Dataset.load(args.dataset_val, compression='GZIP')
ds_val = dataset_val.batch(args.batch_size)
for data in ds_train.take(1):
x, y = data
model(x)
break
model.summary()
if args.summary_only:
sys.exit(0)
output_root = 'data'
timestamp_str = datetime.datetime.now().strftime('%Y-%m-%dT%H%M%S')
dirFile = os.path.join(output_root, timestamp_str)
if os.path.exists(dirFile):
raise RuntimeError(f'Output directory {dirFile} already exists')
os.makedirs(dirFile)
shutil.copy(args.cfg, dirFile)
shutil.copy('AdversarialModel.py', dirFile)
modelDirFile = os.path.join(dirFile, 'model')
print(dirFile)
callbacks = [
ModelCheckpoint(modelDirFile, verbose=1, monitor="val_class_loss", mode='min', min_rel_delta=1e-3,
patience=args.patience, save_callback=None, predicate=save_predicate),
tf.keras.callbacks.CSVLogger(os.path.join(dirFile, 'training_log.csv'), append=True),
]
model.fit(ds_train, validation_data=ds_val, callbacks=callbacks, epochs=args.n_epochs, verbose=1)